Scare off the monster behind the curtain: Big Tech’s monopoly

This post is about the omnipotence of Big Tech. So far, resistance mainly results in regulation of its effects. The core of the problem, the monopoly position of the technology giants, is only marginally touched. What is needed is a strict antitrust policy and a government that once again takes a leading role in setting the technology agenda.

To read this post, press here

Better cities: The role of digital technologies

I just started a new series on the site of Amsterdam Smart City. In more than 20 short articles I will deal with the contribution of digital technology to making cities better. Read the prologue here:

https://amsterdamsmartcity.com/updates/news/prologue-to-a-new-series-better-cities-the-role-of-digital-technologies

Startups: Between the Curse of Becoming a Taker and the Prospect of Being a Maker

Next months, these posts focus on the challenges of Earthlings of to bring humane cities closer. These posts represent the main findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here.

For centuries, entrepreneurship was linked to art and craft and rewarded by personal fulfilment, satisfied customers, and a good life. The term entrepreneur is still associated with giving direction, shape and content to new activities based on personal motivation and skills and thereby creating socially approved value. A description that applies to the self-employed, business entrepreneurs, franchisees or intrapreneurs and includes both commercial, institutional, and artistic activities. However, there are two problems. Overcoming them opens the way to become a better business.

The plunder of the earth

Nobel laureate Joseph Stiglitz has warned that the creative power of entrepreneurship can easily become destructive. A ‘maker’ becomes a ‘taker’ once creating value becomes making money in the first place. Indeed, for centuries, companies have robbed resources around the world, destroyed nature, traded millions of slaves and exploited domestic workers, creating the divide between rich and poor countries.

The creative power of entrepreneurship can also be aimed at sustainable prosperity, for their employees, the country, and the world. In that case, the “purpose” of a company precedes the pursuit of profit. Unfortunately, still a minority of all companies are moving in this direction while others pretending.

The decline of engagement and passion within the workforce

There is more. In developed countries, the blatant exploitation of labour has disappeared. Instead, the majority of employment relegates into low strain jobs. Research by Gallup and Deloite has shown over consecutive years that over 64% of all employees worldwide are not engaged or passionate. Find John Hagel explain this in a short video. The reason is clear. 20th century companies have organized their production according to principles of scalable efficiency and have top-down planning and control.  Room for initiative is therefore neither expected nor desired. Moreover, detailed protocols and regulations limit employment for people at a distance from the labour market.

In a rapidly changing world, companies must be adaptive and innovative. They therefore need flexible, interdisciplinary teams with a high degree of self-government and less pay differentials. According to recent research in 17 countries, this type of organizations (8%) outperforms in all respects.

Summarizing, to become a better business requires a double challenge: 

  • Replace the dominance of the pursuit of money with a social and environmental purpose. 
  • Mobilizing the entrepreneurial and other capacities of their whole work force by forms of self-organization and shared leadership. 

Why focussing on startups?

As only a limited number of companies meet these conditions, employees consider starting their own business. In the US alone, approximately two million workers give up well-paying jobs every year and become self-employed. 127,000 starters were registered in the Netherlands in 2018.  Of them, only a minority will become a startup, which means that they will successfully commercialize a promising technological innovation and grow rapidly on an international level.

Start-ups are potential engines of growth and innovation. In the US, their steady growth is compensating for job losses in the rest of the economy. Dutch startups created 20.000 of jobs in 2018 and 2019. A recent reportoffers excellent documentation of the identity, growth and potential of the 4,311 Dutch startups in 2019, most of which have fewer than 10 employees. 34% of Dutch startups can found in the Amsterdam metropolitan area.

The hope is that start-ups will rise to both challenges by nurturing their social and environmental purpose end fueling the commitment and passion of each employee, and thereby become a better business.

Yet, like any other businesses, startups risk becoming takers rather than makers, trading their social and environmental purpose for the pursuit of money and losing the engagement and passion of their employees. Fortunately, they can prevent this.

Eleven ways to stay a better business

  1. Embrace self-organization and shared leadership.
  2. Involve all employees in the continuous strengthening of the social and environmental purpose of the company.
  3. Enable all employees to become shareholders or even better co-owners.
  4. Cherish diversity within the employees.
  5. Secure shares in a foundation while enabling shareholders to support the purpose of the company. 
  6. Cap the profit to a level that guarantees the continuity of the company.
  7. Ban greed, cancel bonuses, or at most pay a limited and equal allowance to all employees.
  8. Place surplus profits in a foundation that spends money in accordance with the purpose of the company.
  9. Being a fair taxpayer who refrains from tax avoidance practices.
  10. Create a supervisory board to monitor the purpose of the company.
  11. Focus the founder/director/CEO role on monitoring the purpose of the company and the commitment of all employees and on fueling the discussion on how to deal with changing external conditions.

Rapid societal changes require a reinventing the concept of entrepreneurship. Because of their flexibility and commitment, startups are apt to embrace the dual ambition of pursuing a social and environmental purpose and of mobilizing all employee’s engagement and passion. 

Beyond smart cities: Digital innovation for the Good of citizens[1]

Next months, these posts focus on the challenges of Earthlings of to bring humane cities closer. These posts represent the main findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here.

Citizens involved in a participative policy formulation process

About ten years ago, technology companies started to provide cities with technological tools, luring them with the predicate ‘smart(er)’, now a registered trademark of IBM.  At that time Cisco’s vice-president of strategy Inder Sidhu described the company’s ‘smart city play’ as its biggest opportunity, a 39,5 billion dollar-market. During the years, that followed, the prospects rocketed: The consultancy firm Frost and Sullivan estimated the global smart city technology market to be worth $1.56 trillion by 2020. 

The persistent policy of technology companies to suggest a tight link between technology and the wellbeing of the citizens, angers me. Every euro these companies are chasing at, is citizens’ tax money. What has been accomplished until now is disappointing, as I documented in the IET Journal.  According to The Economist it is not surprising that a ‘techlash’ is underway: Many have had it with the monopolistic dominance of behemoths like Google, Amazon, Facebook and the like, because of their treatment of sensitive data, the lack of transparency and accountability of algorithm-based decision making and the huge profits they make from it. 

Regaining public control

However, let’s not throw out the baby with the bathwater and see how digital innovation can be harnessed for the Good of all citizens. Regaining public control demands four institutional actions at city level.

1. Practicing governance

Before even thinking about digitalization, a city must convert into best practices of governance. Governance goes beyond elections and enforcing the law. An essential characteristic is that all citizens can trust that government represents their will and protects their interests. Therefore, it is necessary to go beyond formal democratic procedures and contact stakeholders directly, enable forms of participatory budgeting and deploy deliberative polling. 

Aligning views of political parties and needs and wants of citizens takes time and a lot of effort. The outcome might be a common vision on the solution of a city’s problems and the realisation of its ambitions, and a consecutive political agenda including the use of tools, digital ones included. 

2. Strengthening executive governmental power

Lack of cooperation within the departmental urban organizations prevents not only an adequate diagnosis of urban problems but also the establishment of a comprehensive package of policy instruments, including legislation, infrastructure, communication, finance and technology. Instead, decisions are made from within individual silos, resulting in fragmented and ineffective policies. Required is a problem-oriented organization instead of a departmental one and a mayor that oversees the internal coherence of the policy.

3. Level playing field with technology companies

Cities must increase their knowledge in the field of digitization, artificial intelligence in particular. Besides,  but they should only work with companies that comply with ethical codes as formulated in the comprehensivemanual, Ethically Aligned Design: A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems, drafted by the influential Institute of Electric and Electronic Engineers (IEEE)

Expertise at city level must come from a Chief Technology Officer who aligns technological knowledge with insight in urban problems and will discuss with company representatives on equal foot. Digitalisation must be part of all policy areas, therefore delegating responsibility to one alderman is a bad idea. Moreover, an alderman is not an adequate discussion partner for tech companies.

4. Approving and supporting local initiatives

Decentralization of decision-making and delegating responsibility for the execution of parts of the policy to citizen’s groups or other stakeholders helps to become a thriving city. Groups of citizens, start-ups or other local companies can invoke the right of challenge and might compete with established companies or organizations.

Steps towards seamless integration of digitalization in citizen-orientated policy

  1. Define together with citizens a vision on the development of the city, based on a few central goals such as sustainable prosperity, inclusive growth, humanity or – simply – happiness.
  2. Make an inventory of what citizens and other stakeholders feel as the most urgent issues (problems and ambitions).
  3. Find out how these issues are related and rephrase them if desirable.
  4. Deepen insight in these issues, based on available data and data to be collected by experts or citizens themselves.
  5. Assess ways to address these issues, their pros and cons and how they align with the already formulated vision.
  6. Make sure that digital technology has been explored as part of the collected solutions.
  7. Investigate which legal, organizational, personnel and financial barriers may arise in the application of potential solutions and how to address them.
  8. Investigate undesired effects of digital techniques, in particular long-term dependence (‘lock-in’) on commercial parties.
  9. Formulate clear actions within the defined directions for dealing with the issues to be addressed. Involve as many expert fellow citizens as possible in this.
  10. Make a timetable, calculate costs, and indicate when realization of the stated goals should be observable.
  11. Involve citizens, non-governmental and other organizations in the implementation of the actions and make agreements about this.
  12. At all stages of the process, seek support from those who are directly involved and the elected democratic bodies.
  13. Act with full openness to all citizens.

I can’t agree more than with the words of Léan Doody (smart city expert Arup Group): I don’t necessarily think ‘smart’ is something to strive for in itself. Unlike sustainability or resilience, ‘smart’ is not a normative concept…. The technology must be a tool to deliver a sustainable city. As a result, you can only talk about technological solutions if you understand which problems must be solved, whether these problems are rooted in the perceptions of stakeholders and how they relate to other policy instruments.


[1] This article was posted before at the Amsterdam Smart City website

Eleven building blocks for the transition to sustainable energy

Next months, these posts focus on the challenges of Earthlings of to bring humane cities closer. These posts represent the main findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

After having finished five posts on controversial aspects of the energy transition (‘The stepdaughters of climate science’, in Dutch), I summarized my favorite solutions. in eleven short statements

1. I will feel most comfortable in a world deploying energy provided by sun and wind to reduce greenhouse gas emissions. This implies a huge transition, which, also brings significant benefits for an emerging sustainable economy.

2. Instead of opting for an expensive third-generation nuclear power plants, we better invest in the development of fourth generation nuclear energy plants, such as Thorium, or molten salt reactors. Their waste is limited, and they are inherently safe. These reactors could potentially replace outdated wind turbines and solar panels from 2040.

3. We must also continue using less energy, without undue expectations. After all, clean energy can potentially be abundantly available in the long term, although this is particularly relevant for developing countries.

4. In addition to the use of solar and wind energy, I am opting for hydrogen. It will be used for heavy industry, to level discrepancies in the supply and demand of energy and as an additional provision for heating buildings and houses. The presence of high-quality gas networks, as in the Netherlands, is easing this choice. In addition, we use residual heat, biomass of reliable origin and we exploit geothermal energy where its long-term availability is assured.

5. By no means we are producing all necessary hydrogen gas ourselves. The expectation is realistic that after 2030 it will be produced in deserts and transported from there at a competitive price.

6. The North Sea and the IJsselmeer will become the most important places for the extraction of wind energy. Besides, solar panels are installed on roofs wherever possible. We care for our landscape and therefore critically consider places where ground-based solar panels can be installed and where wind turbines are not disturbing. Part of the wind energy is converted into hydrogen on site.

7. It could easily last until 2040 before the import and production of hydrogen meets our needs. Therefore, we must continue to use (imported) gas for quite some time.  To prevent greenhouse gas emission, significant capacity to capture and store CO2 must be in place, at least temporarely.

8. Given the availability of temporary underground storage of CO2, premature shutting down our super-efficient gas and coal-fired power stations it is unnecessary capital destruction. They can remain in operation until the facilities for solar and wind energy generation are at the desired level and sufficient hydrogen gas is available.

9. Energy co-operations facilitate the local use of locally produced energy, thus enabling lower prices, and limiting the expansion of the electricity grid. To this end, private and neighborhood storage of electricity is provided.

10. Reliably collected biomass is deployed as raw material for the biochemical industry in the first place and can further be used for additional fueling of coal and gas-powered stations (with CO2 capture) and as local energy source for medium temperature district heating networks.

11. Finally, we must take enough time to choose the best way to heat buildings and houses at neighborhood level. Getting off gas prematurely can induce wrong choices in the longer term. A gradual phasing out of gas heating and cooking will enable us to wait longer for the moment when hydrogen (gas) is available to replace the natural gas in neighborhoods where it is the best solution.


This article has been published before at the Amsterdam Smart City website

Tools for circular construction

Next months, these posts deal with the challenges of Earthlings of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

Structural waste in the build environment. Source: The circular economy: Moving from theory to practice, McKinsey & Company 2015

The impact of circular principles in the construction sector is huge, because buildings are responsible for more than 50% of the total use of materials on earth, including valuable types such as steel, copper, aluminium and zinc.  Moreover, they produce about 40% of all greenhouse gases.

By circular construction we mean designing, building and demolishing a building in such a way that, in addition to the high-quality reuse of materials, justice is done to sustainability ambitions in the field of energy, water, and biodiversity and ecosystems.

In case of demolishment, nowadays many components are reused, but at a very low level, for instance concrete and stones as the foundation of new roads. Apart from the question how many new roads are still needed, this type of recycling destroys the intrinsic quality of materials and does not diminish the recovery of new materials. At least, separation of glass, steel, wood and other materials can be made mandatory. In addition, valuable materials can by ‘saved’ by operating in a targeted manner, even though these buildings are anything but circular. This is called ‘urban mining’. The biggest problem is that recycled materials are often more expensive than new ones.

Anyway, a first step is more efficient use of existing buildings. Evidently, progress can be made by planning, designing, developing and building circular buildings. A number of options are mentioned below[1].  

Urban planning

Challenges for planning are the use of inner-city vacant land and issuing mandatory requirements regarding the construction of new buildings, for instance the use of less cement, glass and steel, the mandatory application of a certain percentage of reused materials, and becoming energy positive or at least energy-neutral. Switching to sustainable timber is an option for 90% of homes and 70% of offices being built.

Mandatory reuse of existing components

Reuse of existing materials means than glass is reused as glass and concrete pillars as pillars. The same applies to doors, frames, carpets, wall-cladding materials and so on. 

The materials passport, which contains an overview of all materials and components that are used to construct of a house or building, is a useful tool as well. The obligation to reuse a large percentage of existing components has far-reaching consequences for the design and construction of new houses. To start with, after demolishment all materials must be selected, cleaned, registered and stored in new-to-develop warehouses.


The Circl pavilion of the ABN-AMRO bank

The Circl pavilion of the Dutch ABN-AMRO bank is an example of a new building that uses as many existing components as possible. For instance, 1200 m2 of wooded floors, partition walls of a demolished building and 16.000 garments of employees for isolation purposes. All components of the building are designed to be reused[2].


Industrial production and 3D printing

Construction of components in factories, deploying industrial processes, will reduce costs by 30 percent and the delivery time by at least 50 percent.

Decreasing size of apartments

The size of apartments will decrease, partly due to costs, but also because of the presence of shared guest rooms, lounge areas and terraces for working and socializing, spaces for washing and drying laundry.

The need for office space will decrease rapidly due to sharing space and working in an external environment. So IBM has only one desk available for 12 employees. Given the presence of 300,000 employees, this has led to savings on real estate of around € 1 billion in the past 10 years. 

Modularity and durability

A key barrier for better use of floor space is the lack of flexibility in the design of buildings and room configurations. A modular design, which provides for easy replacement of partitions and placement of complete functional units (kitchens and bathrooms) facilitates adjustments as the use of a building changes.

Forget new construction at all

As families become smaller and offices need less space, existing space becomes more underused. Well-thought adjustments to the lay-out of existing houses and buildings can improve their efficiency without reducing their amenity. That is what adaptive reuse stands for: instilling a new purpose on an existing “leftover building.”. A number of inspiring examples can be seen here[5].


[1] https://www.mckinsey.com/business-functions/sustainability/our-insights/the-circular-economy-moving-from-theory-to-practice

[2] https://www.duurzaambedrijfsleven.nl/infra/24589/abn-amro-opent-deuren-van-innovatief-en-circulair-paviljoen-circl

[3] http://www.winsun3d.com/En/About/

[4] https://www.dirtt.com/

[5] https://www.archdaily.com/931659/10-plus-proposals-to-promote-adaptive-reuse-and-introduce-transformative-ideas?utm_medium=email&utm_source=ArchDaily%20List&kth=

Resilience and prediction of hazards

Next months, these posts focus on the challenges of Earthlings of to bring humane cities closer. These posts represent the main findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

In my last post, I elaborated on resilience. Resilience has two sides. At the one hand it has to do with policy aimed at anticipation and mitigation hazards. At the other hand, it refers to the capacity of both government and citizens to deal with their impact.

Anticipating hazards

The most difficult problem in anticipating hazards is knowing what hazard to anticipate. This is difficult, given the long list of chronic stressors and acute shocks that can affect a city. Emergency plans should focus not only on the most likely disasters, but on all conceivable ones. Listing possible threats is not that difficult: plane crashes, terrorists blowing up a dam or shooting visitors during a football match, previously unknown massive and violent protests, outbreak of a hitherto unknown deadly disease, an attack by a foreign power or, if you want, aliens, et cetera.

It is impossible to make separate plans for all these threats. The preparation should take place on a more abstract level. For example, what to do if roads are impassable, many people have died, there is no electricity, water and gas, an evacuation must take place within a few hours, et cetera. Agreements must be made in advance about outside assistance, and which means of communication can be used permanently.  

Citizens should be involved in these activities. Otherwise, they will become dependent on government initiatives, which will not come as the command center is destroyed.  Citizens should be trained in self-management complementary – or in case of emergency – to replace official actions.

Anticipating hazards is easier if some types of hazards are a recurring phenomenon, such as flooding. Activities include installing early warning systems, preparing emergency services, providing scenarios for the evacuation of the elderly and the sick, allocating places for temporary housing, gathering tents, organizing access to food, drinking water and to medical care. The faster and more accurate the prediction is, the better the preparations can be.

Flood Concern creates map-based visualizations of places where floods can hit hardest, up to five days before an approaching storm using artificial intelligence. These are simulations in the form of time-lapses of how the water will rise, at what speed and in which direction.  These maps also indicate which parts of the infrastructure will flooded or wash away, and how mitigation efforts – from sand backs to opening locks – will turn out. With this data, emergency services can determine which roads are still accessible, and plan evacuation routes accordingly. 

Dealing with impact

If accurate forecasts are available, the government, together with citizens, can implement previously designed and trained plans to mitigate the effects of the flooding. However, anybody must stay vigilant to respond to unexpected changes in the anticipated course of events. 

One of the most dramatic cases to discuss is the massive earthquake that devasted all of Haiti on January 12, 2010, claiming 316,000 lives, injuring another 300.000 and displacing more than 1.5 million people. The earthquake was just the beginning:  In the following years other devasting natural disasters caused thousands of new deaths, engraved famine, and a deadly cholera epidemic, wiping out ongoing efforts to rebuild the country. Until now, millions of Haitians are still in need of humanitarian aid and many still live in camps without proper sanitation and drinking water. To date, the international community has raised € 8 billion in aid. What it was used for is unclear, in spite of a large number of helping hands. It seems that the rebuilding of the country is mainly due to the inhabitants themselves, who started rebuilding their primitive huts again and again by using the remains of their previous emergency shelters. The government infrastructure was destroyed by the dictatorial regimes of father and son Duvalier and led, among other things, to the depart of most residents with some education. So the country had done nothing to prepare for a possible disaster, and there was no policy to cope with its consequences.

It is evident that dealing with the impact of hazards depends from te degree of anticipation. Otherwise, full reliance on social capital is the only hope.

What is resilience

Next months, these posts deal with the challenges of Earthlings of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

Ultimate resilience: Floating Oceanix City – picture Bjarke Ingels Group (public domain)

Building dykes as flood protection is one of the oldest forms of resilience. However, people only started building dykes after their houses, roads and crops had been flooded several times and they had managed each time to recover from the damage. Later, the dykes broke and they were reinforced. This brings us to the core of the concept of resilience:Building capacity within individuals, communities, institutions, businesses, and systems to survive, adapt, and grow no matter what kinds of chronic stresses and acute shocks they experience.

Resilience is an attitude of individuals and also a behavioral pattern of a group of people, for instance inhabitants of a city. The 100 Resilient Cities-movement (100RC) distinguishes seven qualities that together characterize resilience

Qualities of resilience – 100RC

The use of the term resilient city has been promoted by international organizations and associations of cities to improve the ability of cities to handle hazards such as hurricanes Katarina in the New Orleans region (2005) and Sandy along the east coast of North America (2012).

In subsequent years, the concept hazard has been expanded to include external pressures in general, varying from climate change, environmental degradation to poverty. That is why the 100RC-movement distinguishes between chronic stresses and acute shocks. 

 characteristicsexamples
Chronic stressRepeating events that weaken the fabric of a city on a daily or cyclical basis. High unemployment, inefficient public transportation system, endemic violence and chronic food and water shortages.
Acute shockSudden events that disrupt the life in a city. Earthquakes, floods, disease outbreaks, airplane crashes and terrorist attacks

Becoming resilient at city level refers to policies that deal with all these types of hazards. These policies include:

  • Precautionary measures based on the recognition and anticipation of imminent threats.
  • Coping strategies, including directs actions to limit damage, to help victims and repair the damage. 
  • Prevent risks or mitigate their impact. 

In these policies involvement of citizens is essential, as it is unpredictable whether hazards will undermine or destroy the executive power of the municipality. Citizens have to be trained to initiate actions, complementary to the official ones and possible even as replacements.

Each of these aspects will be discussed in my nest post.

How can cities make the difference, regarding the realization of circular goals

Next months, these posts deal with the challenges of Earthlings of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

Cities can make the difference

Firstly, by bringing parties together, developing inspiring goals, removing barriers arising from existing regulations, facilitating sharing, stimulating innovative research, supporting start-ups that contribute to circular solutions and providing financial incentives, for example, by differentiating tax rates.

Secondly, by making circular plans in areas where the city government is primarily responsible. Local authorities have a large and direct influence through legislation and investments related to urban planning, issuing building permits, mobility systems, urban infrastructure, district heating, energy production and distribution, waste collection, municipal taxes and the local labour market[1].

For instance: Amsterdam

The city of Amsterdam is a shining example. It has committed itself to the circular economy as an important pillar of its sustainability policy. The city wants to be a forerunner and has a good starting position because many citizens, businesses, start-ups, and (knowledge) institutions are convinced by the necessity of a circular economy[2].


The municipality applies the following principles:

  • All materials are part of an infinite physical or biological cycle.
  • All energy comes from renewable sources.
  • Modular and flexible design of production chains to increase the adaptability of systems.
  • New activities that enable the shift from possession of goods to use of services.
  • Logistical systems that switch to more region-oriented services.
  • Human activities that contribute to the regeneration of “natural capital”.

Together with external parties, such as TNO and Circle, the city has evaluated existing value chains with respect to ecological impact, economic importance, value retention and transition potential. This resulted in a selection of two fields (‘chains’) in which the greatest circular impact can be achieved, namely the construction chain and the organic residual chain. 

Construction chain

By organizing the construction chain in a circular fashion and at the same time realizing 70.000 new homes by 2040, a 3% productivity gain is feasible representing a worth of € 85 million per year. This is the result of reusing material and efficiency improvements. The table below is mentioning the main activities to be developed in the next years.

Organic residual streams chain

High-value processing of organic residual flows over a period of five to seven years, will result in an added value of 150 million euro per year. This is the result of source separation of organic waste in all households and in the food processing industry. The organic residual flow is used to produce proteins for animal feed, biogas and building blocks for the production of bioplastics. 

Is a circular city also a humane city?

There is no doubt that in the long run everyone benefits from a circular economy. However, in the short term it can weaken the purchasing power of the poor. Poor people around the world have already created an informal circular economy by buying or exchanging worn-out goods such as cars, refrigerators, furniture, and clothing. Goods that are available at flea markets, thrift stores or through family and friends. As soon as these goods become part of a regular circular process, their availability will decrease and their prices rise. Not to mention a ban on selling these goods for environmental or safety reasons. 

This problem is not inherent in the circular economy, but arises from the growing gap between the rich and poor part of humanity. Consequently, policies aimed at the development of a circular society must also create the conditions for a more just and egalitarian society.


[1] https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Cities-in-the-CE_An-Initial-

[2] https://www.circle-economy.com/wp-content/uploads/2016/04/Circular-Amsterdam-EN-small-210316.pdf

Plastics: The unnecessary paragon of the take-make-waste economy

Next months, these posts deal with the quest for bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

Plastics are versatile materials. However, their production contributes to greenhouse gas emissions and plastic waste threats our health. The way in which plastics have developed and are distributed illustrates that a circular economy stands or falls with product design. So far, the design of plastics reflects the ‘take-make-waste’ principle: Every year more than 300 million tons of plastic are produced worldwide, half of which are for single use. Only 10% or all plastics are made from recycled material. It can be different.

Plastic waste that ends up in nature degrades into micro plastics – plastic soup – and retains its chemical composition and toxic nature. Micro plastics eventually end up in the food cycle. More than 100 million tons of plastic already float in the oceans.

In the meantime, alternatives are being searched for, albeit far too late. Unilever leads the way[1]. The company currently produces 700,000 tons of plastic packaging. This will be reduced by 100,000 tons in 2025. Moreover, the company wants that all its plastic packaging becomes reusable, recyclable or compostable and that at least 25% recycled plastic is used in the production of new plastic[2].

Below is a brief overview of the different options.

Recycling

Preventing plastics from entering nature requires an extensive and costly system for collecting and separating waste and technology for high-quality recycling of the collected plastic waste.

The separation of waste

In case of a single-stream collection system, people throw plastic, glass, metals and paper into one collection bin. As a consequence, these items have to be separated. The video below shows the operation of a large-scale separation line.

As can be seen, quite a lot or human assistance is needed. New machines limit this unattractive work thanks to artificial intelligence. They are able to separate 20 different types of plastics[3].

Chemical recycling

One of the biggest hurdles in recycling plastics is its pollution, for instance as a result of added dyes. The Dutch company Ioniqa can chemically reduce PET waste to ‘virgin’ PET[4]. Large plastic users like Coca-Cola intent to co-operate with Ioniqa. The video below shows how chemical recycling works.

Use of sustainable raw materials (biobased plastics)

The advantage of using sustainable raw materials (biomass) in the production of plastic is the reduction of CO2 emissions. However, biomass is becoming increasingly scarce and its production can compete with food crops and forestry. Moreover, most bio-based plastics are not biodegradable. If they end up in litter, the effects are as harmful as those of other plastics. For these and reasons mentioned below, there are quite some disadvantages associated with biobased plastics.

Biologically degradable plastics

Ideally, these biologically degradable plastics are biobased materials, which are safely broken down in nature in short time. PHA for example. Unfortunately, years of research have not yet led to its large-scale production. 

Some other types of plastics such as PLA (biobased) and PBAT (not bio-based) are compostable, but only in an industrial environment. These types of plastics may be added to the organic waste. However, most consumers cannot distinguish between biodegradable, biobased and other types of plastics. As a result, many plastics unintendedly end up in the plastic soup.

Reuse

If plastic had been designed for a circular economy from the start, the emphasis would undoubtedly have been on reuse. This also applies to industrial applications such as PVC. Thanks to a substantial deposit, the majority of all plastics could be reused than.

Back to reusable packaging?

Together with Coca-Cola, Proctor & Gamble, Nestlé, Unilever has joined Loop, a platform that develops refillable packaging[5]. Supermarkets that deliver products at home can easily include them in their range. The video below shows how the system works.

Ban on some types of plastics

The collection of plastics still is still seriously inadequate and a large proportion of plastics ends up in nature as visual litter and return to our food chain as toxic plastic soup. This applies in particular to plastic bags, cups, trays for snacks and soft drinks bottles without a deposit. A ban seems to be the only way-out.


[1] https://www.duurzaambedrijfsleven.nl/recycling/32505/unilever-reductie-co2?q=%2Frecycling%2F32505%2Funilever-reductie-co2&utm_source=nieuwsbrief&utm_medium=e-mail&utm_campaign=Daily+Focus+9+Oktober

[2] https://medium.com/fast-company/250-organizations-are-joining-forces-to-end-plastic-waste-103736e5771d

[3] https://medium.com/scientific-american/can-robots-help-pick-up-after-the-recycling-crisis-aace4210472b

[4] https://www.duurzaambedrijfsleven.nl/industrie/31471/innovatie-ioniqa

[5] https://www.duurzaambedrijfsleven.nl/future-leadership/32641/verduurzaming-succesfactoren?q=%2Ffuture-leadership%2F32641%2Fverduurzaming-