Digital technology eats politics for breakfast.

This short essay is looking for an answer to the question “Does technology develop autonomously or can society be in control?

This issue takes a central position in two thought-provoking books to be discussed below [1].

The first book is Radical Technologies, written by Adam Greenfield (Verso, 2017). The second one is A New Digital Dealby Bas Boorsma (Rainmaking Publications, 2017). Both authors have been involved in the development of smart cities for many years. Bas Boorsma among others in various global and regional roles in Cisco. Adam Greenfield – also author of Against the Smart City[2]has been working among others as an information architect for Nokia. Nowadays he is teaching at London School of Economics. Both books go beyond smart cities and focus on the role of digitalization in society.

Setting the stage

Bas Boorsma has a strong belief in the – until now only partially realized – potential of digital technology. Adam Greenfield refuses to discuss any such hypothetical value. He refers at Stafford Beer’s famous phrase The purpose of a system is what it doesand that is the colonization of the daily life by technology giants and near-monopolists like Google, Apple, Amazon, and Facebook, called ‘the Stacks’ and other big technology companies.

Digitalization

The essence of digitalization is restructuring economy and society with digital communication and infrastructures. According to Bas Boorsma, the network paradigm will replace centralist thinking by the development of many connected nodes, in society and in the digital world as well. The organisation of society and the principles behind the Internet will reinforce each other. 

Many expected digitalization to facilitate the emergence of a ‘true’ free market, i.e. an economy based on peer-to-peer principles, collaboration, with small enterprises relying of the network effect and digital tools to conduct business in ways previously reserved for large corporations (New Digital Deal, p.52). This is what initially happened indeed: The development of platforms empowered start-ups, small companies and professionals. Many network utopians believed the era of ‘creative commons’ had arrived and with it, a non-centralized and highly digital form of ‘free market egalitarianism’(New Digital Deal, p.52).

Some already predicted the decline of capitalism.

Bas Boorsma

However, the network paradigm and the platform economy have been appropriated to a large extend by ‘the Stacks’ and other big companies. As a consequence, the workings of capitalism, revitalizing monopolism and oligarchy have been amplified. Digitalization-powered capitalism now possesses a speed, agility and rawness that is unprecedented(New Digital Deal, p.54). In this respect Bas Boorsma’s en Adam Greenfield’s visions do not divert much. 

A New Digital Deal

According to Bas Boorsma digitalization cannot be countered, but steering is needed and feasible. He applies the analogy of a skillfully steered canoe sailing an incredible fast-flowing river, harvesting its energy. A New Digital deal must steer the further development and impact of digitalization to deliver on its promise in full, and we have to do this in a moral context… (New Digital Deal, p.42). In order to deploy digitalization and to manage platforms for the greater good of the individual and society as a whole, new regulatory approaches will be required… (New Digital Deal, p.46). This has to enable us to manage technological growth, regulate platforms, celebrate recalibrated free market principles, prepare for the emergence of new and better jobs, harvest digitalization generated wealth… and to tax wealth and platform rather than labor(New Digital Deal, p.65).

Thus the New Digital Deal requires strong regulatory power to bridge the tension between at one side the initial expectations and hopes for a post-capitalist society, dominated by many connected small actors and at the other side the appropriation of the digitalization and the platform-economy by ‘the Stacks’ and other companies. The question is what does this regulatory power include. 

Bas Boorsma deals in depth with the societal impact of digitalization in domains like healthcare, education, transport, and energy. In each case he explores the content of the New Digital Deal. In the meantime I searched in vain for the answer to the question about the regulation of free markets and growing monopolism of ‘the Stacks’. The answer to this question is particularly important because it is exactly the unrestricted growth of monopolism that feeds Adam Greenfield’s deep pessimism with respect to the societal benefits of digitalisation. Adam Greenfield does not answer this question either, presumably because there is no answer. Still, I think there is one.

The vanity of a digital paradise

Adam Greenfield

Before returning to the New Digital Deal, I go deeper into the reason of Adam Greenfield’s pessimism. In consecutive chapters of his book he unveils how big companies – sometimes in cooperation with the state – have taken possession of digital technologies: Where previously everything that transpired in the fold of the great city evaporated in the moment it happened, all of these rhythms and processes are captured by the network and retained for inspection (Radical Technologies, p.5). This because of the combined effect of smartphones, sensors, security cameras, ‘wearables’ – like Hitatchi’s Business Microscope – and the fast increasing capabilities of the algorithmic production of knowledge. 

Was blockchain technology intended as the foundation for newly to develop decentralized peer-to peer distributed organizations, is it actually captured by large companies. They embrace it as a fundamentally improved entrusted framework for identity and data sharing (contracts and databases). 

However truly transformative circumstances will arise not from any one technology standing alone, but from multiple technical capabilities woven together in combination (Radical technologies, p.273). Again ‘the Stacks’ will benefit most. Their innovation capacity is larger than any other company and their cash is unlimited. They are turning the entire planetary-scale entrepreneurial community into a vast distributive R&D lab… At any given moment there are thousands of startups busily exploring the edges of technological possibility, and shouldering all the risk of involved in doing so. (Radical Technologies, p.281) By focusing on the development of ‘minimum viable products’ they anticipate to be taken over by one of ‘the Stacks’ or other technology companies and cash the millions these companies offer. The start-up community is more vital than ever before but is nothing like the decentralized occupants of the nodes of the network on the eve of a new liberalized order. In stead they support the dominance of ‘the Stacks’. 

The failing of politics

The influence of politics – other then incidental support – in western countries with respect to the growing power of ‘the Stacks’ is negligible. Maybe with the exception of the European Union that is entangled in rearguard actions by fining some eye-catching forms of monopolism. In contrast, the Chinese gouvernment is molding technology to its own aims, albeit not in an exemplary way. Supported by China’s own ‘Stacks’ – among them Alibaba and Baihe – the government is integrating smartphones, wearables and social networking services to establish the degree of ‘social credit’ of all of its citizens.

I expect a negative answer from Adam Greenfield to the question whether technological development is an autonomous force like the fast-floating river in Bas Boorsma’s analogy. In the USA large-scale scientific programs supervised by state-institutions like the legendary DARPA enabled major technological development. This carefully planned process resulted not only in the nuclear bomb but also in the discovery of all components of the later iPhone, which initial development – by the way – has been subsidized by the state too, as has been disclosed in detail by Mariana Mazzocato[3].Nowadays the development of technology and its impact on employment is predominantly instigated by strategic choices made by ‘the Stacks’ and other technological companies.

As a consequence, any ‘deal’ regarding steering technological development or safeguarding the interest of citizens and society at large will have to target ‘the Stacks’.

The New Digital Deal revisited

This brings us back to the New Digital Deal. Targeting ‘the Stacks’ has to be preceded by decisive lawmaking at national or supranational level with respect to the aim and the conditions of digitalization for the purpose of society at large. Referring at Bas Boorsma the aim is enabling a networked and connected society with thriving activity in all nodes and free markets in between. A far from complete – list of conditions includes:

  • A strong and enforced anti-trust policy.
  • The discouragement of acquisitions in favor of collaboration within networks.
  • Unbundling heterogeneous conglomerates of companies (‘to big to fail’).  
  • Governance guidelines discouraging short-termism, the stock markets included.
  • Considerable taxes on profits, which might be released by participation in state-coordinated research programs together with universities and other stakeholders.
  • A basic-income combined with the right at paid work for adult citizens.

An emerging digital community

I seriously doubt the ability of the bitterly divided European states to settle conditions as mentioned above in the near future. Meanwhile my expectations of lower level governments – cities in particular – are higher. At this level, high and low tech digital tools might be applied and enabled to prove their value in relation to challenges as traffic, healthy air, sustainable energy and safety. Bas Boorsma’s 20 building blocks of community digitalization will prove their value here. Each of these building blocks is actionable. The ‘community digitalization’ approach puts citizen’s needs and wants in the center and their fulfillment will come from a network of stakeholders. The local government can be held responsible for robust connectivity and digital safety and also for interoperability and the deployment of non-proprietary protocols. 

Somewhere at an undetermined but eagerly awaited moment in the future a world of collaborating cities might force states to take their responsibility and issue the laws that are necessary to establish a New Digital Deal. 

Did your appetite grown?

Start reading both books! Those who are attuned to practical solutions better start with Adam Greenfield’s because his well-documented approach to technology definitely will put practice in a new light. Also his way of phrasing is excellent. Readers with a more academic mind-set are advised to start with Boorsma’s book, because his life-long experience will be helpful in making theory actionable. And that is where many of us are waiting for.


[1] The title of this short essay is inspired by the phrase ‘Culture eats strategy for breakfast’ attributed to management guru Peter Drucker. This post has been published before at Smart City Hub.

[2]https://www.goodreads.com/book/show/18626431-against-the-smart-city

[3]https://wp.me/p32hqY-6p

Energy storage: The missing link

Hornsdale Energy Reserve Australia – Photo TESLA

Many are convinced of the value of sustainable energy and the number of proponents continues to grow. Nor is energy storage an issue anymore. In this short essay, I discuss three different methods for storing energy[1]. 

A forth solution, storage in hydrogen, will be dealt with in a next article.

Storage in batteries

For the time being, Tesla has built the largest energy storage battery in the world in South Australia with a power of 100 megawatts and a storage capacity of 129 megawatt-hours[2]. The electricity comes from a local wind farm. The battery has immediately proven its value. In the event of a recent power outage, it restarted the supply of energy many times faster and without any problems for the users than the available gas turbines. Moreover, for a price that is 90% lower. It is very plausible that a storage system of sufficient size could have prevented the problems at Schiphol half a year ago due to a short-circuit in a Tennet cable[3].

Vattenfall uses 500 BMW i3 batteries for its energy storage project in Wales[4]. Their joint power is 22 megawatts and they are fed by of 76 wind turbines. They supply 13% of the electricity needs of all households in Wales annually.

The projects mentioned-above are examples of centralized storage facilities for large-scale delivery of renewable energy. The Amsterdam virtual power plant is a small-scale example[5]. Here 50 households produce electricity with solar panels, store them in-house and trade them if the price on the energy market is the most favorable. Tesla will do the same in Australia, but with 50,000 households[6]. The company is working on a huge virtual power plant. Each household has solar panels, with a power of 5 kilowatts and a Tesla Powerwall 2 battery with 13.5 kilowatt-hours capacity. The power of plant as a whole is 250 megawatts and its storage capacity 675 megawatt-hours.

Neighborhood battery – Photo DNV GL

Energy production and storage in the Netherlands will contain both large and small-scale elements. In the report Feasibility and scalability of the neighborhood battery, DNV GL investigates the contribution to the storage of energy in the Netherlands of small-scale energy storage systems, also known as neighborhood batteries[7]. Their construction is simple and the impact on the environment is limited. The concept of the neighborhood battery is well applicable in residential areas. It enables peer-to-peer exchange and trading of electricity.

The Amsterdam Energy Arena is an example of the application of a neighborhood battery. Its storage capacity is 3 megawatts[8]. Energy comes from 4200 solar panels on the roof of the stadium. This virtual power plant will supply power in the immediate vicinity and is also a buffer for the grid.

The grid of the Amsterdam Energy Arena – image Amsterdam Arena.

All projects that have been discussed up to now deploy Litihum (li’ion) batteries. The fast-growing demand makes lithium increasingly scarce and expensive. That is why alternatives are sought. One is the manganese-hydrogen battery[9], another the silicon battery[10]. The latter might have a storage capacity that is ten times larger than that of the li’ion battery. However, it will take years before both are on the market.

Test set-up heat storage in salt – Photo TNO

Heat storage in salt

The storage of heat is very simple. All you need is a block of salt of two cubic meters. This will provide enough energy to heat your home throughout the winter: Thermal solar collectors convert sunlight into heat. The heat causes a chemical reaction in the salt, resulting in its dehydration. Conversely, adding water to the dry salt releases heat. 

PhD student Pim Donkers (TU / e) investigated how that process works exactly and which salt you can use best[11]. The biggest problem was the degeneration of the salt, which gradually reduced its storage capacity. 

The Dutch research institute TNO has solved this problem by influencing the properties of the salt used[12]. The advantage is obvious; salt is cheap and widely available. TNO is collaborating with nine companies in eight European countries to develop this invention into a market-ready product within the framework of the European project CREATE. A demo house that is supplied with heat in this way will be open for the public in short notice. 

For several years, Marnix ten Kortenaar has been working on the development of the sea salt battery in his company Dr. Ten[13]. In all its simplicity, the principle is a container with dissolved sea salt and carbon electrodes. The Gridflex project is a pilot in the Dutch village of Heeten, deploying 25 salt batteries and that aims to create a local energy market[14]. The solar energy is generated, stored, traded and consumed completely locally. For this pilot, Energy cooperative Endona was granted exemption from the Dutch Electricity Act[15].  

A third example comes from the German company EWE that intends to use salt domes for the storage of electricity[16], based on the principle of the redox battery[17].

The largest redox battery in the world – Image EWE

The project is called brine4power. A positive and a negatively charged electrolyte form the basis for this ‘natural’ battery, starting from the ions of ordinary salt[18].

A test set-up is realized in containers. Their storage capacity will gradually be increased to 2500 kilowatt-hours. Next, the storage of the electrolytes in salt domes will be piloted . This trial will take place in Jemgum along the Ems, near Groningen. EWE now uses these domes for the storage of gas. In 2023 ultimately, the battery will consist of two salt domes with a volume of 100,000 m3 and a total storage capacity of 700 megawatt-hours. As far as is known yet, no harmful effects are attached to this form of sustainable energy management. 

Energy storage with water 

Plan Lievense 1981 – Drawing brothers Das 

One of the oldest and still most common way of storing energy is pumping water to reservoirs with the help of surplus electricity. In times of energy scarcity, this water is used to generate hydro-energy. In the early 1980s, Luc Lievense designed a number of applications for this principle that could be used by the Netherlands[19]: Artificial lakes in the Markerwaard and even in the North Sea varying in height from a few ten to hundred (!), meters. 

It soon became clear that maintaining one or two conventional power plants for peak capacity was much cheaper. 

Nowadays, the idea of heat storage in water or in another liquid, follows another track: Excess energy is converted into heat which is that is stored in water[20]. The company Ecovat has developed a storage vessel (‘the ecovat ©’) in which 1500 m3 of water is stored underground for a period of 6 months with a temperature of 90 ° C and a yield of 90%.[21]

Cross-section of an ecovat © – Figure Ecovat

The ecovat © is a double-walled vessel. Heat exchangers between the double wall provide for the extraction or addition of heat to the water in the vessel. The water that runs through the heat exchanger is heated with sustainable heat from local geothermic sources , waste heat and solar energy. The ecovat © is also equipped with control software. This ensures, among other things, that action is taken on the basis of current weather forecasts and energy prices. 

A demonstration project has been realized in the Dutch village of Uden.  This project has a capacity of 88,000 kilowatt-hours and can supply up to 1,000 homes with heat. Ecovat works together with Enexis, a regional grid operator in the Netherlands. Ecovat is part of a consortium called Flexible Heat and Power (FHP). This consortium is co-financed under Horizon 2020. 

The reduction of the production of natural gas production in the Netherlands has increased the urgency of the question from where we will get our heat in the future. Sustainable sources like wind, sun and earth are plentiful, provided huge investment to make them available.  For the purpose of storing several alternatives are available too, which enables making locally-adapted choices. 


[1]https://www.lazard.com/perspective/levelized-cost-of-energy-2017/

[2]https://www.duurzaambedrijfsleven.nl/energie/27113/tesla-gaat-voor-grootste-virtuele-energiecentrale-bestaande-uit-50000-huishoudens

[3]https://www.volkskrant.nl/nieuws-achtergrond/ik-weet-het-even-niet-zegt-ict-schiphol~bdcf9424/?utm_campaign=shared%20content

[4]https://www.duurzaambedrijfsleven.nl/energie/23689/alfen-levert-mega-energie-opslag-van-bmw-batterijen-aan-nuon

[5]https://www.expirion.nl/blog-3–burgers-bouwen-eigen-virtuele-elektriciteitscentrale.html

[6]https://electrek.co/2018/02/04/tesla-powerwall-solar-virtual-power-plant/

[7]https://www.dnvgl.nl/publications/haalbaarheid-en-schaalbaarheid-van-de-buurtbatterij-113722

[8]https://www.duurzaambedrijfsleven.nl/stad-van-de-toekomst/29203/hoe-148-tweedehands-elektrische-auto-accus-de-arena-van-stroom-voorzien

[9]https://www.duurzaambedrijfsleven.nl/energie/28415/nieuwe-batterij-voor-goedkope-opslag-hernieuwbare-energie

[10]https://www.duurzaambedrijfsleven.nl/energie/28421/duitse-onderzoekers-ontwikkelen-silicium-accu-met-hoge-opslagcapaciteit

[11]https://www.cursor.tue.nl/nieuws/2015/november/sluitstuk-zout-als-verwarming/

[12]https://www.tno.nl/nl/aandachtsgebieden/bouw-infra-maritiem/roadmaps/buildings-infrastructure/energiepositieve-gebouwde-omgeving/warmtebatterij-doorbraak-opslag-duurzame-energie/

[13]https://www.buurkracht.nl/nieuws/thuis-energie-opslaan-met-een-zeezoutbatterij

[14]https://www.natuurenmilieuoverijssel.nl/friksbeheer/wp-content/uploads/2017/10/energievoorziening-in-de-toekomst-GridFlex-Heeten.pdf

[15]https://www.rvo.nl/subsidies-regelingen/projecten/grid-flex-heeten

[16]https://www.ewe.com/de/presse/pressemitteilungen/2017/06/ewe-plant-größte-batterie-der-welt-ewe-ag

[17]https://www.deingenieur.nl/artikel/redoxbatterij-levert-buffer-boerenstroom

[18]https://www.ewe-gasspeicher.de/home/b4p

[19]https://www.deingenieur.nl/artikel/lievense-de-man-van-het-opslagbekken

[20]http://www.dgem.nl/nl/andere-duurzame-energie-oplossingen/thermische-energieopslag-systemen

[21]https://www.ecovat.eu

Smart building: The long way to a circular economy

 

 

afbeelding1
Demolition waste – Photo Jim Henderson Licensed under Creative Commons

 

Possibly, in 2050 the word waste can be removed from our dictionaries. At that time, the Dutch economy will be circular according to the government. Meaning in essence that all raw materials are reused infinitely. In order to reach this goal, an agreement with respect to the use of raw materials has been concluded between 325 parties. Its first milestone is halving the use of primary raw materials before 2030[1].

Many are sceptical of the outcomes of this agreement. Admittedly, 38.7% of the Dutch population feels that we are on the right track, although progress is slow. Jan Jonker[2], professor of business administration at Radboud University, is more pessimistic:  We do not think circular yet. Institutions, from legal to fiscal, are fully geared to the linear economy.

Amsterdam is making progress. In 2015, the municipality explored opportunities for a circular economy, which have been published in Amsterdam Circular: Vision and roadmap for city and region[3]. Dozens of projects have been started, albeit mostly on a small scale and starting from a learning-by-doing perspective.

The report Amsterdam circular; evaluation and action perspectives[4](2017) is an account of the evaluation of these projects. It concludes that a circular economy is realistic.  The city has also won the World Smart City Award for Circular Economy for its approach – facilitating small-scaled initiatives directed at metropolitan goals. Nevertheless, a substantial upscaling must take place in the shortest possible time.

Below, I focus on the construction sector, which includes all activities related to demolition, renovation, transformation and building. Its impact is large; buildings account for more than 50% of the total use of materials on earth, including valuable ones such as steel, copper, aluminum and zinc. In the Netherlands, 25% of CO2 emissions and 40% of the energy use comes from the built environment.

By circular construction, we mean design, construction, and demolition of houses and buildings focused on high-quality use and reuse of materials and sustainability ambitions in the field of energy, water, biodiversity, and ecosystems as well. For example, the Bullitt Centerin Seattle, sometimes called the greenest commercial building in the world, is fully circular[5]

afbeelding2
Photo: James Provost licensed under Creative Commons

The construction sector is not a forerunner in innovation but of great importance with respect to circularity goals. The Amsterdam metropolitan region is planning to build 250,000 new homes deploying circular principles before 2050.

The evaluation of the projects that have been set up in response to the Amsterdam Circular Plan has yielded a number of insights that are important for upscaling:

The most important is making circularity one of the key criteria in granting building permits.

The others are the role of urban planning and the contribution of urban mining, which will be dealt with first.

The role of urban planning

Urban planning plays a crucial role in the promotion of circularity. It is mandatory that all new plans depart from circular construction; only then a 100% reuse of components after 2050 is possible. The renovation of existing houses and buildings is even more challenging than the construction of new ones. Therefore, circular targets must also apply here. Dialogue with the residents, and securing their long-term perspective is essential. The transformation of the office of Alliander in Duiven into an energy neutral and circular building is exemplary (photo below).

afbeelding3
Photo: VolkerWessels Vastgoed

The contribution of urban mining

Existing buildings include countless valuable materials. The non-circular way of building in the past impedes securing these materials in a useful form during the demolition process. Deploying dedicated procedures enables the salvation of a large percentage of expensive materials. In this case, we speak of urban mining. Unfortunately, at this time re-used materials are often more expensive than new ones.

Therefore, a circular economy will benefit with a shift from taxes on labor to taxes on raw materials.

Issuing building permits

The municipality of Amsterdam made a leap forwards with respect to issuing building permits to enable circularity[6]. Based on the above-mentioned definition of circular building, five themes are addressed in the assessment of new building projects: Use of materials, water, energy, ecosystems as well as resilience and adaptivity. Each of these themes can be scrutinized from four angles:

– the reduction of the use of materials, water and energy

– the degree of reuse and the way in which reuse is guaranteed.

– the sustainable production and purchase of all necessary materials.

– Sensible management, for example, full registration of all components used.

Application of these angles to the five themes yields 32 criteria. A selection of these criteria is made in each project, depending from whether the issuing of building permits or renovation is concerned, and also from where the building takes place. For instance, a greenfield site versus a central location in a monumental environment.

One of the projects

In recent years, the municipality of Amsterdam has included circular criteria in four tenders: Buiksloterham, Centrumeiland, (residential buildings), the Zuidas (offices) and Sloterdijk (retail and trade). On the Zuidas, the first circular building permit was granted in December 2017. 30% of the final judgment were based on circularity criteria.

The winner is AM, in collaboration with Team V Architects. In their project Cross over, they combined more than 250 homes with offices, work space for small businesses and a place for creative start-ups. The project doesn’t have a fixed division between homes and offices. Reuse in future demolition is facilitated by a materials passport and by building with dry connections, enabling easy dismantling.

afbeelding14png
Crossover – photo Zwartlicht

Need to organize learning

The detailed elaboration of the 32 criteria for circularity to be applied in tenders, covers more than 40 densely printed pages. One cannot expect from potential candidates to meet the requirements routinely. It would therefore be welcomed if the municipality of Amsterdam shared its knowledge with applicants collectively during the submission process.

I also would welcome ‘pre-competitive’ cooperation by communities with manufacturers, knowledge institutions, clients and construction partners with the aim to develop circular building.

This involves for instance standardization of the dimensioning of components (windows, frames, floorboards) and the ‘rehabilitation’ of ‘demolished’ components while maintaining the highest possible value. This might be combined with a database in which developers can search for available components.

In Zwolle, another strategy is followed: the municipality, housing corporations and construction companies have formed a Concilium[7], which aims to significantly expand the already planned construction of houses, using circular principles.

Circularity requires closing circles. Collaboration within the supply-chain is one of these.

[1]https://www.rijksoverheid.nl/documenten/rapporten/2016/09/14/bijlage-1-nederland-circulair-in-20

[2]https://www.duurzaambedrijfsleven.nl/circulaire-economie/27945/de-stand-in-het-land-zijn-we-al-een-beetje-circulair

[3]https://www.amsterdam.nl/wonen-leefomgeving/duurzaam-amsterdam/publicaties-duurzaam/amsterdam-circulair-0/

[4]https://www.amsterdam.nl/wonen-leefomgeving/duurzaam-amsterdam/publicaties-duurzaam/amsterdam-circulair-1/

[5]http://www.bullittcenter.org

[6]https://www.amsterdam.nl/wonen-leefomgeving/duurzaam-amsterdam/publicaties-duurzaam/amsterdam-circulair-1/

[7]https://www.weblogzwolle.nl/nieuws/61325/ambitieus-plan-voor-zwolse-woningmarkt.html

 

Swap smart city for inclusive city

Last year I wrote 24 short essays about smart cities. They are collected in an e-book, that can be downloaded for free here. What to expect?

Smart city tales

For more than 10 years, ‘smart’ has been a ‘leitmotif’ for tackling urban problems. Companies such as IBM and Cisco, and later also Apple, Amazon and Google all emphasised that technology is the key to their solution. Many city administrators, entrepreneurs and young starters felt attracted to this idea.

But why these blinkers? Anyone who focuses blindly on technology as the solution to contemporary problems will quickly lose sight of the problems themselves. They underrate the problems caused by technology itself and also that for many problems other solutions than technological ones are indispensable.

Some examples of problems that make people worried

  • Will I come around with my income?
  • Do I find an affordable house?
  • Is there still work for the children?
  • Is the air that I breathe healthy?
  • Why is my manager so unreasonable?
  • How secure is the internet?
  • Who will take care of my mother later?
  • Can I trust what I eat?
  • Developments are all going too fast for me
  • Who is actually in charge
  • Does a world war will break out?
  • Does my child like to go to school
  • Who can I still trust?
  • Can I still say what I think?
  • Is my country still my country?
  • Why do top managers earn so much money?

Core values

Reducing these problems to four categories proved to be helpful:

  • Threat to basic needs
  • Pillage of the earth
  • Injustice
  • Abuse of technology and data

Each of these categories also refers to core values ​​that in mutual connection will improve the quality of life in a country and the happiness of its inhabitants.

Inclusive growth

 Well-being

The satisfaction of our basic needs such as livelihood, housing, education, health care, social contacts and personal growth. There is still a lot to improve here.

 Sustainable prosperity

The earth has all the ingredients for a healthy and even prosperous life for us and our offspring. This requires a circular economy based on reuse of resources, the elimination of CO2 emissions, and a less materialistic attitude. The awareness is growing, there is still a lot to do.

Justice

The fact that we live together with others is of vital importance, whether it is a partner, family, the street, the city or the country. The quality of our social life depends on the mutual acceptance of equality and diversity and the balance between give and take. Here too, humanity still has a lot to learn.

Digital connectivity

Just like all forms of technology, computerization is able to support the other core values, but is also a value in itself. ICT adds a new dimension to human creativity and inventiveness and can improve the quality of our lives. However, the virtues of digital connectivity ought not to be appropriated by certain groups. Interoperability, ‘edgeless computing’, ‘blockchain’ and the use of open software standards and open data can contribute to prevent this.

The four core values ​​can be at odds with each other, but also reinforce each other. In the latter case, I refer to inclusiveness.

In each of the 24 short essays the ‘smart city idea’ as a starting point. Sometimes politicizing, for example when it comes to the way the big technology companies take control of society, but also anecdotal, for instance in the smart cities cases like PlanIT Valley near Porto, but also very practical, for example in introductions to circular construction, electricity-generating windows and the storage of energy.

In the final essay I propose to replace the idea smart with inclusive growth. To become more concrete about what that means, I have drawn up a charter that every city or region in the world can use. I already recognize the quest for inclusiveness of a number of cities such as Barcelona, ​​Amsterdam, Copenhagen, Melbourne and Seoul. However, these and all others ones still have a long way to go.