Green and smart are not twins

Recently, the European Commission launched a 100-city plan, the EU Mission on Climate-Neutral and Smart Cities. One hundred European cities that aspire to be climate neutral by 2030 were invited to register and count on supplemental funding. And yes, more than 100 did. As the European Commission aspires a simultaneous green and digital transformation, it is taking about green and digital twin. I immediately thought of another 100-city plan, India’s Smart City Mission. In 2015, Prime Minister Modi announced that in six years 100 Indian cities would become ‘smart’ with the goal of solving the uncountable problems that Indian cities face. This connection failed. Therefore, my advice to the commission is, stick to one ambition, becoming climate-neutral.

The main reason of the limited outcomes of the Indian mission is the gap between its ambitions and the nature of the problems that India is facing. Cities are bursting at the seams because of the millions of poor people who flock to cities every year in search of work and a place to live that find them only in the growing slums. The priorities for which the country must find a solution are therefore: improving life in rural areas, improving the quality of housing, ensuring safe drinking water, waste disposal, sanitation, and purification of wastewater, good transport and less polluting car traffic. 

The ‘Mission’ has not tackled these problems at the root, but instead looked for a solution in ‘smartification’.

IC solutions have been concentrated in enclaves where businesses and prosperous citizens are welcomed. The Government of India Special Rapporteur on Housing therefore notes that the proposals submitted had a predominant focus on technology rather than prioritizing affordable housing and doubts the correctness of this choice. Instead of emphasizing the role of digital technology, the focus should have been on equitable, inclusive, and sustainable living areas for all. 

The European Union cherishes the image of a ‘green and digital twin’, a simultaneous green and digital transformation. Digital technology will certainly contribute to the energy transition, for example in ‘smart grids’. However, the reduction of greenhouse gases and digitization should not be seen as extensions of each other. Making a city climate neutral requires much more than (digital) technology, certainly if this aim must be achieved before 2030. This is only possible by focusing on the basics: building wind-turbines, spreading VF-panels, adapting the grid and organize the availability of green hydrogen and finally cherish citizen’ participation.

This post based on by the new e-book Better cities, the contribution of digital technology.  Interested? Download the book here for free (90 pages)

Content:

Hardcore: Technology-centered approaches

1. Ten years of smart city technology marketing

2. Scare off the monster behind the curtain: Big Tech’s monopoly

Towards a humancentric approach

3. A smart city, this is how you do it

4. Digital social innovation: For the social good

Misunderstanding the use of data

5. Digital twins

6. Artificial intelligence

Embedding digitization in urban policy

7. The steps to urban governance

8. Guidelines for a responsible digitization policy

9. A closer look at the digitization agenda of Amsterdam

10. Forging beneficial cooperation with technology companies

Applications

11. Government: How digital tools help residents regaining power?

12. Mobility: Will MaaS reduce the use of cars?

13. Energy: Smart grids – where social and digital innovation meet

14. Healthcare: Opportunities and risks of digitization

Wrapping up: Better cities and technology

15. Two 100 city missions: India and Europe

Epilogue: Beyond the Smart City

Advertisement

Eleven building blocks for the transition to sustainable energy

Next months, these posts focus on the challenges of Earthlings of to bring humane cities closer. These posts represent the main findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

After having finished five posts on controversial aspects of the energy transition (‘The stepdaughters of climate science’, in Dutch), I summarized my favorite solutions. in eleven short statements

1. I will feel most comfortable in a world deploying energy provided by sun and wind to reduce greenhouse gas emissions. This implies a huge transition, which, also brings significant benefits for an emerging sustainable economy.

2. Instead of opting for an expensive third-generation nuclear power plants, we better invest in the development of fourth generation nuclear energy plants, such as Thorium, or molten salt reactors. Their waste is limited, and they are inherently safe. These reactors could potentially replace outdated wind turbines and solar panels from 2040.

3. We must also continue using less energy, without undue expectations. After all, clean energy can potentially be abundantly available in the long term, although this is particularly relevant for developing countries.

4. In addition to the use of solar and wind energy, I am opting for hydrogen. It will be used for heavy industry, to level discrepancies in the supply and demand of energy and as an additional provision for heating buildings and houses. The presence of high-quality gas networks, as in the Netherlands, is easing this choice. In addition, we use residual heat, biomass of reliable origin and we exploit geothermal energy where its long-term availability is assured.

5. By no means we are producing all necessary hydrogen gas ourselves. The expectation is realistic that after 2030 it will be produced in deserts and transported from there at a competitive price.

6. The North Sea and the IJsselmeer will become the most important places for the extraction of wind energy. Besides, solar panels are installed on roofs wherever possible. We care for our landscape and therefore critically consider places where ground-based solar panels can be installed and where wind turbines are not disturbing. Part of the wind energy is converted into hydrogen on site.

7. It could easily last until 2040 before the import and production of hydrogen meets our needs. Therefore, we must continue to use (imported) gas for quite some time.  To prevent greenhouse gas emission, significant capacity to capture and store CO2 must be in place, at least temporarely.

8. Given the availability of temporary underground storage of CO2, premature shutting down our super-efficient gas and coal-fired power stations it is unnecessary capital destruction. They can remain in operation until the facilities for solar and wind energy generation are at the desired level and sufficient hydrogen gas is available.

9. Energy co-operations facilitate the local use of locally produced energy, thus enabling lower prices, and limiting the expansion of the electricity grid. To this end, private and neighborhood storage of electricity is provided.

10. Reliably collected biomass is deployed as raw material for the biochemical industry in the first place and can further be used for additional fueling of coal and gas-powered stations (with CO2 capture) and as local energy source for medium temperature district heating networks.

11. Finally, we must take enough time to choose the best way to heat buildings and houses at neighborhood level. Getting off gas prematurely can induce wrong choices in the longer term. A gradual phasing out of gas heating and cooking will enable us to wait longer for the moment when hydrogen (gas) is available to replace the natural gas in neighborhoods where it is the best solution.


This article has been published before at the Amsterdam Smart City website

What is resilience

Next months, these posts deal with the challenges of Earthlings of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

Ultimate resilience: Floating Oceanix City – picture Bjarke Ingels Group (public domain)

Building dykes as flood protection is one of the oldest forms of resilience. However, people only started building dykes after their houses, roads and crops had been flooded several times and they had managed each time to recover from the damage. Later, the dykes broke and they were reinforced. This brings us to the core of the concept of resilience:Building capacity within individuals, communities, institutions, businesses, and systems to survive, adapt, and grow no matter what kinds of chronic stresses and acute shocks they experience.

Resilience is an attitude of individuals and also a behavioral pattern of a group of people, for instance inhabitants of a city. The 100 Resilient Cities-movement (100RC) distinguishes seven qualities that together characterize resilience

Qualities of resilience – 100RC

The use of the term resilient city has been promoted by international organizations and associations of cities to improve the ability of cities to handle hazards such as hurricanes Katarina in the New Orleans region (2005) and Sandy along the east coast of North America (2012).

In subsequent years, the concept hazard has been expanded to include external pressures in general, varying from climate change, environmental degradation to poverty. That is why the 100RC-movement distinguishes between chronic stresses and acute shocks. 

 characteristicsexamples
Chronic stressRepeating events that weaken the fabric of a city on a daily or cyclical basis. High unemployment, inefficient public transportation system, endemic violence and chronic food and water shortages.
Acute shockSudden events that disrupt the life in a city. Earthquakes, floods, disease outbreaks, airplane crashes and terrorist attacks

Becoming resilient at city level refers to policies that deal with all these types of hazards. These policies include:

  • Precautionary measures based on the recognition and anticipation of imminent threats.
  • Coping strategies, including directs actions to limit damage, to help victims and repair the damage. 
  • Prevent risks or mitigate their impact. 

In these policies involvement of citizens is essential, as it is unpredictable whether hazards will undermine or destroy the executive power of the municipality. Citizens have to be trained to initiate actions, complementary to the official ones and possible even as replacements.

Each of these aspects will be discussed in my nest post.

Stop the depletion of the earth

Next months, these posts deal with the challenges of Earthlings of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

Brighton Waste House, a project of the Faculty of Arts and Humanities. Photo: University of (public domain).

The picture above is the Waste house at the university campus of Brighton, constructed from local waste.  In our society reuse of waste still is limited. Repair of household appliances seems to be not done: Last year, three devices in my home broke. No shops could fix them, although surfing the Internet revealed the existence of replacement parts.  I’d better buy a new one, they advised. 

The flow of materials

Our economy is characterized by the take-make-waste principle, which results in an excess of cheap mass products that are thrown away at the end of their life cycle. Moreover, the majority of the raw materials are not recycled or reused in low quality. The result is a large amount of waste, pollution and the rapid exhaustion of raw materials worldwide.

A closer look at the flowchart of materials below is enlightening. Look here for a larger copy

The graph reveals that the volume of resources extracted in 2017 was 84,4 Gt (billions of ton), supplemented by 8.4 Gt reused ones: Minerals (37.9 Gt,) ores (9.6 Gt, fossil fuels (16,6 Gt) and biomass (28,7 Gt). In 2017 the global economy was 9,1% circular. In 2019 only 8,6%.

Of this material input in 2017 (92.8 Gt), 36.0 Gt became part of the long-term stock of buildings, roads, cars and other capital goods. The stock of capital goods (houses, buildings, infrastructure, fleet) has expanded considerably in recent decades, which can lead to a large increase in potential waste in the coming years.

The largest part (56.8 Gt) was used for the production of goods with a lifetime that does not extend beyond 2017.

Of the total waste of 19,4 Gt in 2017, 8.4 Gt is reused, for example by water treatment, the production of biogas, through recycling (only 1,4 Gt) and by composting. The majority of recycled material is of low quality. The remainder, 9,2 Gt is ‘lost’ and is scattered in the environment.  For instance, through microfibers that are added to the ocean and might return in the food chain.

Towards a circular economy

The problem of the ‘take-make-waste’-principle is not waste only. The linear economy on which this principle is based is a major cause of greenhouse gas emissions and, moreover, leads to the depletion of raw materials by rich and emerging countries or better, their rich minorities all over the world. The extraction of resources by contemporary and previous generations will stagnate the developing of future generations. Replacement by the circular principle can correct this lack of justice. 

Materials such as metals, plastics and chemicals cannot return to nature without processing. Instead, we distinguish four ways to stretch their lifespan and preserve their value, so that no new raw materials have to be extracted.

  • Repairing and sharing;
  • Reuse by other users without major changes;
  • Renovate and overhaul, dismantle and assemble into a new product, possibly with the addition of new functionalities;
  • Recycling: tracing back the product to its original material, preferably at the highest possible level (for example, plastic waste becomes ‘virgin’ plastic). In this case the original product can be re-manufactured.

A circular economy is regenerative by design and aims to keep products and materials in permanent use, without the need to exploit additional resources. 

It is based on four principles:

  • Decoupling the provision of new products and services from the availability of finite resources. 
  • Design out waste and pollution and other negative externalities of economic activity that harm human health and natural systems. This includes toxic substances, greenhouse gas emissions, air, land and water pollution, and traffic congestion.
  • Maintaining the highest value of components and materials by designing them for reuse, rework and recycling.
  • Maintaining natural capital through the circulation of nutrients and creating the conditions for regeneration of, for example, soil.

We are at the beginning of a long process and we are running out of the time available

Promises of hydrogen: exaggerated or underestimated

Next months, these posts deal with the challenges of Earthlings of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

e-bike fuelled with hydrogen

Hydrogen can play an important role in the storage of cheap and surplus green electricity, as an alternative to natural gas and as a fuel for buses, trains, planes, and ships.

The production of hydrogen

The process of electrolysis brings water into contact with electricity, resulting in oxygen and hydrogen. A 100% clean process, provided the use of energy from carbon-free sources. ‘Blue’ hydrogen occurs when the CO2 released during the production of electricity is collected and stored.

Advantages and disadvantages of hydrogen.

The storage of hydrogen is easy, particularly if conversed into ammonia. A kilo of hydrogen is producing the same amount of energy as a fully-fledged Tesla Power Wall. A tank with 60,000 m3 of ammonia can deliver more than 200 million kilowatt hours. That is the annual production of 30 wind turbines on land. The problem with hydrogen is that 60% of energetic value is lost when electricity is used to make hydrogen and hydrogen is converted it into electricity again. Storing electricity in a battery yields only 5% loss of value.

Hydrogen plant in Rotterdam (blue containers) and the apartment complex (left center) that will be heated with hydrogen. Photo: DNV GL

Heating

A possible application of hydrogen is as a substitute for natural gas, which limits energy loss to 30%. For an apartment complex in Rotterdam, hydrogen will be produced locally and transported via dedicated gas pipelines (photo). An electric heat pump would have reduced energy use with 75%, given perfect isolation. Exactly to avoid cost of isolation, housing corporations are considering hydrogen in older houses. Eventually, heating on hydrogen will be reserved for historic city centers, where few alternatives are available.

Transport

An also frequently mentioned application of hydrogen is transport. In the meantime, for all forms of transport – even bicycling – hydrogen models are available. 

With the foregoing in mind, hydrogen as fuel for passenger cars â€“ not to speak of e-bicycles –  is quite odd. Although the range is about 600 km and refueling is fast, the difference with electric cars is reducing fast. For other means of transport, the verdict may be more positive. The rule is, the larger the desired range and the heavier the load, the more the benefits of hydrogen equal or outweigh the advantages of batteries. Examples are buses, lorries, but also planes and ships

Energy storage

The production costs of solar energy in desert areas are considerably lower than those in Europe. This is mainly due to the considerably greater light intensity, which means that the yield of solar panels and collectors is twice as high. The Gulf States see themselves as future export countries of hydrogen, in the form of ammonia. 

The gas group Air Products & Chemicals has announced that it will build a hydrogen factory in NEOM, a mega city in Saudi Arabia, which is under development. This factory will produce annually 2.3 million tons of hydrogen (1.2 million tons of ammonia). This factory, due to be completed in 2025, will be the largest in the world.

The European Union also has biggest plans. In 2024, 1 million to hydrogen must already be produced, which should have increased tenfold by 2013.

The Netherlands is investigating the possibility of converting wind energy generated in the North Sea to hydrogen on site, if there is an overcapacity on the network. This can save billions in grid reinforcement. The powerful sea breeze may ensure that production is competitive with to imported hydrogen.

Hydrogen storage – Photo NASA

Whether the substantial potential of hydrogen is realized depends in the first place from the availability of cheap sources of wind or solar energy and the willingness of the western world to engage in new dependency from the ‘former’ oil producing countries who can deliver cheap hydrogen.

Energy-neutral houses are within reach

Next months, these posts deal with the challenges of Earthlings of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

An example of an almost fully sustainable buildings (according to BREEAM) is the Bloomberg HQ in London (see photograph). Among the many (technological) means to achieve this is, are a green living wall, natural ventilation systems, and 4,000 integrated ceiling panels that combine heating, cooling, and lighting. 

Buildings and residential houses are the largest energy consumers in cities (heating, warming, cooling and lightning), not to speak about the production of building materials. They account for 40% of the global energy consumption. Massive realization of energy-neutral buildings (NZEBs) is therefore top priority for urban developers.

Copenhagen plans to be CO2-neutral in 2025 and is on track despite significant growth in population and jobs[1]. District heating and cooling of almost the whole city is the most important tool to achieve this, along with the limitation of car-use. Copenhagen implements a smart thermal grid, that uses all the residual heat that comes from industrial and commercial activities. Seawater is used for cooling.

Copenhagen is a shining example for the rest of Europe. There is sufficient residual heat to supply 90% of the heat demand of all houses and buildings. The Heat Europe project tries to link areas with a surplus of residual heat to areas with a shortage. The video below shows the ambitions, contours and outcomes of this project.

New York is exemplary in another way. The Dirty Buildings Bill requires that 50,000 buildings reduce emissions by 40% by 2030 and 80% by 2050[2]. This includes the installation of new windows, insulation, and other retrofit procedures. The law applies to buildings over 25,000 square feet, and together they account for half of all emissions from buildings, although they cover only 2% of total number of buildings in the city[3].

Building permits are useful instruments to influence energy consumption and to promote circularity. In a building permit, requirements can be set for the use of less cement and steel and to limit energy consumption. Switching to sustainable timber is an option for 90% of homes and 70% of offices being built. At the other hand, building in an energy neutral, or even positive way offers many advantages. That is why 37% of British developers are convinced that in a few years’ time their portfolio will largely consist of green buildings. 

Besides, a city like London could save over $ 11 billion over the next 5 years by using existing buildings more efficiently and avoiding new construction, which won’t be a problem in the post-Covid era when one or two days working from home will be the new normal.


[1] https://medium.com/everything-thats-next/this-is-how-copenhagen-plans-to-go-carbon-neutral-by-2025-70849d2d67dc

[2] https://www.fastcompany.com/90336307/new-york-city-is-about-to-pass-its-own-green-new-deal?utm_source=postup&utm_medium=email&utm_campaign=Fast%20Company%20Daily&position=5&partner=newsletter&campaign_date=04182019

[3] https://www.archdaily.com/915656/new-york-citys-mayor-is-planning-to-ban-new-glass-skyscrapers?utm_medium=email&utm_source=ArchDaily%20List&kth=

Climate policy, where fighting global warming and poverty meet

Next months, these posts deal with the challenges of Earthlings of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

Neighborhood Poverty and Household Financial Security | The Pew Charitable  Trusts

Challenges

After the eradication of Covid-19, the world must focus again on the two epoch-making challenges, mitigation of global warming and fighting poverty. According to the World Economic Forum, the mayor threats of humanity. By selecting proper policy tools, both challenges can be addressed at once

The termination of greenhouse gas emissions in 2050 requires huge investments, roughly $ 50 to $ 200 per ‘saved’ cubic meter CO2-equivalents.  At the same time, these investments provide a global economic stimulus of $ 16,600 billion.

Addressing global warming

In summary, municipal authorities worldwide have to work together with all stakeholders, citizens not in the last place, to reduce global warming, and implement a series of activities such as:

  • Covering all suitable roofs with solar panels;
  • Installing wind turbines in seas adjacent to densely populated areas;
  • Creating sufficient storage options for the short and medium term;
  • Creating ‘smart grids’ to manage the production and consumption of electricity;
  • Heating houses with district heating systems powered by industrial residual heat, hydrogen or heat pumps;
  • Reducing energy use through insulation, efficient use of buildings and smart thermostatic systems;
  • Scrutinizing the necessity of new construction and take care that it apples to BREEAM requirements;
  • Using ‘green’ hydrogen for industrial processes
  • Using biotechnology to remove oil, coal and gas from industrial production
  • Reducing use of cars (electric ones included) by urban design, enabling walking and cycling opportunities by public transport and by MaaS.
  • Replace where possible flying by traveling by train
  • Reuse of waste at the highest possible level;
  • Intensification of responsible production of food;
  • Adjustment of consumption patterns like mitigating the use of meat.

Despite the magnitude of the challenge involved by the transition to climate-neutral cities, there is reason for optimism. Money is not the big issue. The required investments will pay for themselves in the long term and the transition to clean technology will contribute to responsible economic growth. However….

Addressing poverty

The overriding limitation is the lack of skilled labor and here is the connection with fighting poverty. The transition to an energy-neutral society will offer ample job opportunities. That is why care for jobs, a reasonable income, adequate housing and education go hand in hand with combating global warming. Jobs are the best guarantee for a reasonable income and job opportunities are an incentive to invest in education. 

It is already ten years ago, that the United nations called for a ‘Global Green New Deal’ in which developed countries would invest at least 1% of GDP on reducing carbon dependency, while developing economies should spend 1% of GDP on improving access to clean water and sanitation for the poor as well as strengthening social safety nets. 

At this moment Green New Deal programs are at the brim of implementation in the US (What a relief!!!!), Canada and Europe as well. These programs are achieving net-zero carbon emissions in the next decades and potentially create millions of well-paying jobs in order to create the necessary infrastructure and to reduce the number of poor, work- or homeless people correspondingly. Add to that protection against monopolies, investments in public transport, access to affordable housing and healthy food, and justice for the historically marginalized people in the transition to a new economy.

If these promises become true, the eradication of Covid-19 will be followed by significant steps towards a more humane world. 

Heading for a doughnut economy: A brief encounter

Next months, my posts deal with the prospects of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here.  

Urban farm – Pinterest

The model for a doughnut economy has been developed by the British economist Kate Raworth in a report for Oxfamentitled A Safe and Just Space for Humanity and the idea quickly spread throughout the world. The essence is that social and environmental sustainability must be guiding principles for economic policy in the 21th century and together direct economic behavior. There is no triple bottom-line: Social and environmental sustainability are in the lead, economy follows.

The idea behind ​​the doughnut-model is simple. if you only look at the shape of a doughnut, you see two circles. A small circle in the middle and a large circle on the outside. The smallest circle represents the minimal social objectives (basic-needs) that apply to each country. The large circle represents the self-sustaining capacity of the planet. All societies must develop policies that stay between the two lines. Where economic behavior nowadays has far reaching consequences that go beyond both lines, future economic policy must aim to make societies thrive between the lines.

Prosperity within limits

The actions below mirror policy actions to prevent overshooting the ecological ceiling and to comply with the social basement, albeit adapted to the capabilities of developed countries. The time horizon is 25 years. Below I give a few examples.

Prevention of overshooting the ecological ceiling:

  1. Reduction to zero of greenhouse gas emissions by the combined use of solar, wind and thermal energy. Hydrogen, salt, batteries, and warm water reservoirs are used for storage.
  2. Local plants are clean; toxic or otherwise dangerous emissions are prevented or temporarily sequestered in order to maintain clean air.
  3. Support of local farmers to restructure their operations in order to regenerate soils, increase biodiversity and contribute significantly to the local food supply. The selling of their products is boosted by substantial tax advantages for certificated products.
  4. Reduction of car use by reconstructing cities in order to limit displacements.
  5. Realizing full-circularity; the import of raw materials is stalled, with the (temporal) exception of indispensable components of batteries.
  6. The use of nitrogen is limited until an acceptable level of emissions in the air or in the groundwater is reached.
  7. Construction of reservoirs for drinking water and water for agricultural applications to balance water extraction and supply of water.

Complying with the social basement

  1. Rebalancing material rewards and job satisfaction, for instance by substantial reduction of income inequality.
  2. Compulsory education from 2 – 18, in combination with internships in companies and institutions.
  3. Tax benefits for B-certified companies (companies for which societal interest are leading).
  4. Local government, companies and institutions work together to offer all adults engaging and challenging jobs with salaries that enable a decent and independent life.
  5. Prices of (imported) products that damage health or the environment (or both) are listed and substantially taxed. 
  6. The cost of health care and assurance depends on obtaining certificates for a healthy life and preventing lifestyle related illnesses such as being overweight.
  7. Citizens can vote directly in matters related to their immediate living environment. 
  8. Decent housing for all adults, and adequate housing for students, situated in an attractive and safe living environment.

A global oriented-mindset

A future of responsible prosperity requires a new mindset, including the meaning of the concept of prosperity itself. Zero greenhouse gas emissions do not only require exchanging carbon energy sources by wind, sun and earth, but also new consumption pattern. Meat becomes a delicacy, to be consumed accordingly. Circular production requires a more efficient use of goods, higher prices, superior quality, the repair of broken devises instead of their replacement, and a less fashion-dependent design. With respect to the traditional yardstick of prosperity, a stable GDP, rather than a growing one is probably the highest conceivable goal, if it should be a goal at all. Wages below modal will rise considerably, wages above modal will decrease, the highest 10% in particular.

If we consider the world as a whole, the policy implications are even more dramatic. A considerable part of the world population still lives below the social basement. The population of these countries is growing fast and concentrates in cities characterized by heavy pollution, traffic jams, dirty industries, poor housing, sanitation and water supply and increasing insecurity and inequality.

In these countries, growth of GDP, the production of goods and services, and the domestic markets as well are necessary for at least one decade. In combination with policies to control population growth and pollution, to use renewable resources and to improve the infrastructure; public transportation, water supply, housing and sanitation in the first place. 

Where governments in developed countries can focus on a transition from traditional growth towards sustainable prosperity immediately, developing countries must simultaneously manage a decade of ‘traditional’ economic growth and a transition to sustainable prosperity.

The social origin of global warming

Next months, these posts deal with the challenges of Earthlings and also with the prospects of bringing humane cities closer. These posts represent the most important findings of my e-book Cities of the future. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here.  

Climate Change | National Geographic Society

As the map below shows, poorer countries have already suffered more from global warming because they are located in the warmest parts of the world, like Africa, South Asia, and Central America. It also applies to the southern and poorest part of the US.

Country-level economic impact of global warming – Image National Academy of Sciences

There is another reality to face. Not only the poorest countries will suffer most from climate change, they hardly can be blamed for it. A recent Oxfam report Extreme carbon inequality shows that the poorest half of the world population – around 3.5 billion people – is responsible for only 10% of total global emissions from individual consumption. About 50% of the emissions come from the richest 10% of people around the world. They have an average carbon footprint that is 11 times as high as that of the poorest half, and 60 times as high as that the poorest 10%. Even a 50% reduction in consumption by the top 10% and a doubling of consumption by the lower 50% would result in a worldwide decrease of consumption of about 15%[1]. Within all countries, the production of greenhouse gasses varies with income. 

/var/folders/5q/w0jt8kbx5vnc_mp7b36p_x480000gp/T/com.microsoft.Word/WebArchiveCopyPasteTempFiles/p6164
Per capita consumption-related emissions in G20 countries

The graph shows that the concept of rich versus poor countries is partly misleading. A small part of the population of all countries has affluent and still-growing opportunity to consume and to contribute to the production of greenhouse gasses; the majority of the population stays far behind.

This national elites with its numerous connections with international business and politics have prevented adequate social and environmental policies for more than half a century, including the only measures that could have prevented global warming, namely the internalization of external costs[2] and in particular carbon tax[3]. The result: the economic prospects of the majority of the global population stay behind and moreover it will suffer most from global warming.


[1] https://www-cdn.oxfam.org/s3fs-public/file_attachments/mb-extreme-carbon-inequality-021215-en.pdf

[2] https://medium.com/@aimunm83/want-to-solve-climate-change-solve-the-economy-ce516e31d361

[3] https://medium.com/the-sensible-soapbox/british-columbias-carbon-tax-is-working-3ea81114be5a