Amsterdam: Heading for a circular economy

Demolition waste โ€“ Photo Jim Henderson Licensed under Creative Commons

Possibly, in 2050 the word wastecan be removed from our dictionaries. At that time, the Dutch economy will be circular according to the government. Meaning in essence, that all raw materials are reused infinitely. In order to reach this goal, an agreement with respect to the use of raw materials has been concluded between 325 parties. Its first milestone is halving the use of primary raw materials before 2030[1].

Many are skeptical of the outcomes of this agreements. Admittedly, 38.7% of the Dutch population feels that we are on the right track, although progress is slow. Jan Jonker[2], professor of business administration at Radboud University, is more pessimistic:  We do not think circular yet. Institutions, from legal to fiscal, are fully geared to the linear economy.

Amsterdam is making progress. In 2015, the municipality explored opportunities for a circular economy, which have been published in Amsterdam Circular: Vision and roadmap for city and region[3]. Dozens of projects have been started, albeit mostly on a small scale and starting from a learning-by-doing perspective.

The report Amsterdam circular; evaluation and action perspectives[4](2017) is an account of the evaluation of these projects. It concludes that a circular economy is realistic.  The city has also won the World Smart City Award for Circular Economy for its approach โ€“ facilitating small-scaled initiatives directed at metropolitan goals. Nevertheless, a substantial upscaling must take place in the shortest possible time.

Below, I focus on the construction sector, which includes all activities related to demolition, renovation, transformation and building. Its impact is large; buildings account for more than 50% of the total use of materials on earth, including valuable ones such as steel, copper, aluminum and zinc. In the Netherlands, 25% of CO2 emissions and 40% of the energy use comes from the built environment.

By circular construction we mean design, construction, and demolition of houses and buildings focused on high-quality use and reuse of materials and sustainability ambitions in the field of energy, water, biodiversity, and ecosystems as well. For example, the Bullitt Centerin Seattle, sometimes called the greenest commercial building in the world, is fully circular[5]

Photo: James Provost licensed under Creative Commons

The construction sector is not a forerunner in innovation, but of great importance with respect to circularity goals. The Amsterdam metropolitan region is planning to build 250,000 new homes deploying circular principles before 2050.

The evaluation of the projects that have been set up in response to the Amsterdam Circular Planhas yielded a number of insights that are important for upscaling: The most important is making circularity one of the key criteria in granting building permits. The others are the role of urban planning and the contribution of urban mining, which will be dealt with first.

The role of urban planning

Urban planning plays a crucial role in the promotion of circularity. It is mandatory that all new plans depart from circular construction; only then a 100% reuse of components after 2050 is possible. The renovation of existing houses and buildings is even more challenging than the construction of new ones. Therefore, circular targets must also apply here. Dialogue with the residents, and securing their long-term perspective is essential. The transformation of the office of Alliander in Duiven into an energy neutral and circular building is exemplary (photo below).

Photo: VolkerWessels Vastgoedย 

The contribution of urban mining

Existing buildings include countless valuable materials. The non-circular way of building in the past impedes securing these materials in a useful form during the demolition process. Deploying dedicated procedures enables the salvation of a large percentage of expensive materials. In this case we speak of urban mining. Unfortunately, at this time re-used materials are often more expensive than new ones. Therefore, a circular economy will benefit with a shift from taxes on labor to taxes on raw materials.

Issuing building permits

The municipality of Amsterdam made a leap forwards with respect to issuing building permits to enable circularity[6]. Based on the above-mentioned definition of circular building, five themes are addressed in the assessment of new building projects: Use of materials, water, energy, ecosystems as well as resilience and adaptivity. Each of these themes can scrutinized from four angles:

  • The reduction of the use of materials, water and energy
  • The degree of reuse and the way in which reuse is guaranteed.
  • The sustainable production and purchase of all necessary materials.
  • Sensible management, for example a full registration of all components used.

Application of these angles to the five themes yields 32 criteria. A selection of these criteria is made in each project, depending from whether the issuing of building permits or renovation is concerned, and also from where the building takes place. For instance, a greenfield site versus a central location in a monumental environment. 

One of the projects

In recent years, the municipality of Amsterdam has included circular criteria in four tenders: Buiksloterham, Centrumeiland, the Zuidas (all residential buildings) and Sloterdijk (retail and trade). On the Zuidas, the first circular building permit was granted in December 2017. 30% of the final judgment were based on circularity criteria.

The winner is AM, in collaboration with Team V Architects. In their project Cross over, they combined more than 250 homes with offices, work space for small businesses and a place for creative start-ups. The project doesnโ€™t have a fixed division between homes and offices. Reuse in future demolition is facilitated by a materials passport and by building with dry connections, enabling easy dismantling. 

Crossover โ€“ photo Zwartlichtย 

Need to organize learning

The detailed elaboration of the 32 criteria for circularity to be applied in tenders, covers more than 40 densely printed pages. One cannot expect from potential candidates to meet the requirements routinely. It would therefore be welcomed if the municipality of Amsterdam shared its knowledge with applicants collectively during the submission process.

I also would welcome ‘pre-competitive’ cooperation by communities with manufacturers, knowledge institutions, clients and construction partners with the aim to develop circular building. This involves for instance standardization of the dimensioning of components (windows, frames, floorboards) and the ‘rehabilitation’ of ‘demolished’ components while maintaining the highest possible value. This might be combined with a database in which developers can search for available components. 

In Zwolle, another strategy is followed: the municipality, housing corporations and construction companies have formed a Concilium[7], which aims to significantly expand the already planned construction of houses, using circular principles.

Circularity requires closing circles. Collaboration within the supply-chain is one of these.


[1]https://www.rijksoverheid.nl/documenten/rapporten/2016/09/14/bijlage-1-nederland-circulair-in-20

[2]https://www.duurzaambedrijfsleven.nl/circulaire-economie/27945/de-stand-in-het-land-zijn-we-al-een-beetje-circulair

[3]https://www.amsterdam.nl/wonen-leefomgeving/duurzaam-amsterdam/publicaties-duurzaam/amsterdam-circulair-0/

[4]https://www.amsterdam.nl/wonen-leefomgeving/duurzaam-amsterdam/publicaties-duurzaam/amsterdam-circulair-1/

[5]http://www.bullittcenter.org

[6]https://www.amsterdam.nl/wonen-leefomgeving/duurzaam-amsterdam/publicaties-duurzaam/amsterdam-circulair-1/

[7]https://www.weblogzwolle.nl/nieuws/61325/ambitieus-plan-voor-zwolse-woningmarkt.html

Digital technology eats politics for breakfast.

This short essay is looking for an answer to the question “Does technology develop autonomously or can society be in control?

This issue takes a central position in two thought-provoking books to be discussed below [1].

The first book is Radical Technologies, written by Adam Greenfield (Verso, 2017). The second one is A New Digital Dealby Bas Boorsma (Rainmaking Publications, 2017). Both authors have been involved in the development of smart cities for many years. Bas Boorsma among others in various global and regional roles in Cisco. Adam Greenfield โ€“ also author of Against the Smart City[2]has been working among others as an information architect for Nokia. Nowadays he is teaching at London School of Economics. Both books go beyond smart cities and focus on the role of digitalization in society.

Setting the stage

Bas Boorsma has a strong belief in the – until now only partially realized – potential of digital technology. Adam Greenfield refuses to discuss any such hypothetical value. He refers at Stafford Beer’s famous phrase The purpose of a system is what it doesand that is the colonization of the daily life by technology giants and near-monopolists like Google, Apple, Amazon, and Facebook, called ‘the Stacks’ and other big technology companies.

Digitalization

The essence of digitalization is restructuring economy and society with digital communication and infrastructures. According to Bas Boorsma, the network paradigm will replace centralist thinking by the development of many connected nodes, in society and in the digital world as well. The organisation of society and the principles behind the Internet will reinforce each other. 

Many expected digitalization to facilitate the emergence of a ‘true’ free market, i.e. an economy based on peer-to-peer principles, collaboration, with small enterprises relying of the network effect and digital tools to conduct business in ways previously reserved for large corporationsย (New Digital Deal, p.52). This is what initially happened indeed: The development of platforms empowered start-ups, small companies and professionals.ย Many network utopians believed the era of ‘creative commons’ had arrived and with it, a non-centralized and highly digital form of ‘free market egalitarianism’(New Digital Deal, p.52).

Some already predicted the decline of capitalism.

Bas Boorsma

However, the network paradigm and the platform economy have been appropriated to a large extend by โ€˜the Stacks’ and other big companies. As a consequence, the workings of capitalism, revitalizing monopolism and oligarchy have been amplified. Digitalization-powered capitalism now possesses a speed, agility and rawness that is unprecedented(New Digital Deal, p.54). In this respect Bas Boorsma’s en Adam Greenfield’s visions do not divert much. 

A New Digital Deal

According to Bas Boorsma digitalization cannot be countered, but steering is needed and feasible. He applies the analogy of a skillfully steered canoe sailing an incredible fast-flowing river, harvesting its energy. A New Digital deal must steer the further development and impact of digitalization to deliver on its promise in full, and we have to do this in a moral contextโ€ฆ (New Digital Deal, p.42). In order to deploy digitalization and to manage platforms for the greater good of the individual and society as a whole, new regulatory approaches will be requiredโ€ฆ (New Digital Deal, p.46). This has to enable us to manage technological growth, regulate platforms, celebrate recalibrated free market principles, prepare for the emergence of new and better jobs, harvest digitalization generated wealthโ€ฆ and to tax wealth and platform rather than labor(New Digital Deal, p.65).

Thus the New Digital Deal requires strong regulatory power to bridge the tension between at one side the initial expectations and hopes for a post-capitalist society, dominated by many connected small actors and at the other side the appropriation of the digitalization and the platform-economy by โ€˜the Stacks’ and other companies. The question is what does this regulatory power include. 

Bas Boorsma deals in depth with the societal impact of digitalization in domains like healthcare, education, transport, and energy. In each case he explores the content of the New Digital Deal. In the meantime I searched in vain for the answer to the question about the regulation of free markets and growing monopolism of ‘the Stacks’. The answer to this question is particularly important because it is exactly the unrestricted growth of monopolism that feeds Adam Greenfield’s deep pessimism with respect to the societal benefits of digitalisation. Adam Greenfield does not answer this question either, presumably because there is no answer. Still, I think there is one.

The vanity of a digital paradise

Adam Greenfield

Before returning to the New Digital Deal, I go deeper into the reason of Adam Greenfield’s pessimism. In consecutive chapters of his book he unveils how big companies โ€“ sometimes in cooperation with the state – have taken possession of digital technologies: Where previously everything that transpired in the fold of the great city evaporated in the moment it happened, all of these rhythms and processes are captured by the network and retained for inspection (Radical Technologies, p.5). This because of the combined effect of smartphones, sensors, security cameras, ‘wearables’ – like Hitatchi’s Business Microscope – and the fast increasing capabilities of the algorithmic production of knowledge. 

Was blockchain technology intended as the foundation for newly to develop decentralized peer-to peer distributed organizations, is it actually captured by large companies. They embrace it as a fundamentally improved entrusted framework for identity and data sharing (contracts and databases). 

However truly transformative circumstances will arise not from any one technology standing alone, but from multiple technical capabilities woven together in combination (Radical technologies, p.273). Again ‘the Stacks’ will benefit most. Their innovation capacity is larger than any other company and their cash is unlimited. They are turning the entire planetary-scale entrepreneurial community into a vast distributive R&D lab… At any given moment there are thousands of startups busily exploring the edges of technological possibility, and shouldering all the risk of involved in doing so. (Radical Technologies, p.281) By focusing on the development of ‘minimum viable products’ they anticipate to be taken over by one of ‘the Stacks’ or other technology companies and cash the millions these companies offer. The start-up community is more vital than ever before but is nothing like the decentralized occupants of the nodes of the network on the eve of a new liberalized order. In stead they support the dominance of ‘the Stacks’. 

The failing of politics

The influence of politics โ€“ other then incidental support – in western countries with respect to the growing power of ‘the Stacks’ is negligible. Maybe with the exception of the European Union that is entangled in rearguard actions by fining some eye-catching forms of monopolism. In contrast, the Chinese gouvernment is molding technology to its own aims, albeit not in an exemplary way. Supported by China’s own ‘Stacks’ – among them Alibaba and Baihe – the government is integrating smartphones, wearables and social networking services to establish the degree of ‘social credit’ of all of its citizens.

I expect a negative answer from Adam Greenfield to the question whether technological development is an autonomous force like the fast-floating river in Bas Boorsma’s analogy. In the USA large-scale scientific programs supervised by state-institutions like the legendary DARPA enabled major technological development. This carefully planned process resulted not only in the nuclear bomb but also in the discovery of all components of the later iPhone, which initial development – by the way – has been subsidized by the state too, as has been disclosed in detail byย Mariana Mazzocato[3].Nowadays the development of technology and its impact on employment is predominantly instigated by strategic choices made by ‘the Stacks’ and other technological companies.

As a consequence, any ‘deal’ regarding steering technological development or safeguarding the interest of citizens and society at large will have to target ‘the Stacks’.

The New Digital Deal revisited

This brings us back to the New Digital Deal. Targeting ‘the Stacks’ has to be preceded by decisive lawmaking at national or supranational level with respect to the aim and the conditions of digitalization for the purpose of society at large. Referring at Bas Boorsma the aim is enabling a networked and connected society with thriving activity in all nodes and free markets in between. A far from complete – list of conditions includes:

  • A strong and enforced anti-trust policy.
  • The discouragement of acquisitions in favor of collaboration within networks.
  • Unbundling heterogeneous conglomerates of companies (‘to big to fail’).  
  • Governance guidelines discouraging short-termism, the stock markets included.
  • Considerable taxes on profits, which might be released by participation in state-coordinated research programs together with universities and other stakeholders.
  • A basic-income combined with the right at paid work for adult citizens.

An emerging digital community

I seriously doubt the ability of the bitterly divided European states to settle conditions as mentioned above in the near future. Meanwhile my expectations of lower level governments – cities in particular – are higher. At this level, high and low tech digital tools might be applied and enabled to prove their value in relation to challenges as traffic, healthy air, sustainable energy and safety. Bas Boorsma’s 20 building blocks of community digitalization will prove their value here. Each of these building blocks is actionable. The ‘community digitalization’ approach puts citizen’s needs and wants in the center and their fulfillment will come from a network of stakeholders. The local government can be held responsible for robust connectivity and digital safety and also for interoperability and the deployment of non-proprietary protocols. 

Somewhere at an undetermined but eagerly awaited moment in the future a world of collaborating cities might force states to take their responsibility and issue the laws that are necessary to establish a New Digital Deal. 

Did your appetite grown?

Start reading both books! Those who are attuned to practical solutions better start with Adam Greenfield’s because his well-documented approach to technology definitely will put practice in a new light. Also his way of phrasing is excellent. Readers with a more academic mind-set are advised to start with Boorsma’s book, because his life-long experience will be helpful in making theory actionable. And that is where many of us are waiting for.


[1] The title of this short essay is inspired by the phrase ‘Culture eats strategy for breakfast’ attributed to management guru Peter Drucker. This post has been published before at Smart City Hub.

[2]https://www.goodreads.com/book/show/18626431-against-the-smart-city

[3]https://wp.me/p32hqY-6p

Hydrogen: Smart but as yet a promise for the future

Recently, Amsterdam[1] published its plan for the energy transition. The obvious conclusion is that the town, like other towns[2], need a lot of hot water for district heating from as yet unknown underground sources and a decuple supply of wind and solar energy. Looking for other supplies, the idea of hydrogen soon comes up.

Looking for other supplies of energy, the idea of hydrogen soon comes up.

Before answering the question about the feasibility of hydrogen as an additional source of heat and electricity, some characteristics of hydrogen have to be discussed.

Advantages and disadvantages of hydrogen.

The process of electrolysis brings water into contact with electricity, resulting in oxygen and hydrogen. A 100% clean process, provided the use of energy from carbon-free sources. โ€˜Blueโ€™ hydrogen occurs when the CO2released during the production of electricity is collected and stored. 

The storage of hydrogen is easy, particularly if conversed into ammonia. A kilo of hydrogen is producing the same amount of energy as a fully-fledged Tesla Power Wall. A tank with 60,000 m3of ammonia can deliver more than 200 million kilowatt hours. That is the annual production of 30 wind turbines on land. The problem with hydrogen is that 60% of energetic value is lost when electricity is used to make hydrogen and hydrogen is converted it into electricity again. Storing electricity in a battery yields only 5% loss of value.

Hydrogen plant in Rotterdam (blue containers) and the apartment complex (left center
) that will be heated with hydrogen. Photo: DNV GL

As a consequence, an obvious application of hydrogen is as a substitute for natural gas, which limits energy loss to 30%.

The Dutch grid operator Stedin will use green hydrogen gas to heat an apartment complex in Rotterdam. The hydrogen will be produced locally and transported via dedicated gas pipelines[3] (photo). An electric heat pump would have reduced energy use with 75%, given perfect isolation. Exactly to avoid the expenditures for isolation, housing corporations are considering hydrogen in older houses. However, the financial advantages of โ€˜greenโ€™ hydrogen, in the long run, have to be seen[4]. Eventually, heating on hydrogen will be reserved for historic city centres, where few alternatives are available.

But what if hydrogen will become much cheaper?  In the near future, the Gulf States will export cheap ‘green’ hydrogen converted into ammonia on a large scale. The production costs of solar energy in desert areas are considerably lower than in Europe, because the yield of solar panels and collectors is twice as large due to the high intensity of insulation[5]. The feasibility of this alternative depends on geopolitical considerations in the first place: Many Western countries will be reluctant to become dependent again from โ€˜formerโ€™ oil producing countries. However, the advantages are obvious.

Another attractive prospect is that hydrogen (ammonia) offer a new destination for a couple of brand new but already depreciated energy plants. In this respect, an experiment in the Magnum power plant at the Eemshaven is of great importance. NUON is investigating whether this type of power plants can be used in a flexible way for the production of electricity while deploying various types of low- or no-emission fuels like hydrogen. In times of a surplus of green electricity, these plants can be used to produce hydrogen. If there is a shortage of electricity, the power plant can convert imported cheap hydrogen into electricity. In the future, probably one of the gas-powered energy plants in Amsterdam will be deployed in the same way. 

e-Bike on hydrogen. The Alpha 2.0. Photo Pragma Industries

An also frequently mentioned application of hydrogen is transport[6]. In the meantime, for all forms of transport – even e-bikes[7]– hydrogen models are available. 

With the foregoing in mind, hydrogen as fuel for passenger cars โ€“ not to speak of bikes –  is quite odd[8]. Although the range is about 600 km and refueling is fast, the difference with electric cars is reducing fast. There are few car brands left that go for passenger cars on hydrogen; Toyota is one of these. The development of a hybrid car that runs on electricity with a battery that can be charged by a fuel cell while driving is noteworthy. Daimler is working on this, after having stopped the development of a fully hydrogen-powered passenger car recently.

For other means of transport, the verdict may be more positive[9]. The rule is, the larger the desired range and the heavier the load, the more the benefits of hydrogen equal or outweigh the advantages of batteries. Examples are buses, lorries, but also planes[10]and ships[11]. The province of Groningen and QBuzz, a regional transport company, are experimenting with buses on hydrogen. The 20 buses will run on the long routes. This in contrast with the rest of the fleet, which will become electric because loading can be fitted into the timetable. 

The conclusion is that the use of Dutch solar or wind energy for the production of hydrogen is costly and does not qualify mostly when electricity can be used directly[12]. The availability of cheap imported hydrogen might be a gamechanger. In the first place, it is a โ€˜greenโ€™ alternative for the use of natural gas particular in buildings or parts of the town where a high level of isolation is costly or infeasible at all. In the second place it is an excellent alternative for long-term energy storing probably in combination with depreciated gas-powered energy plants. Buses, trucks, trains, ships and planes might be a third application.


[1]MRA Warmte Koude – Grand Design 2.0: Handelingsperspectief en Analyse, september 2018 Metropoolregio Amsterdam

[2]https://www.nijmegen.nl/fileadmin/bestanden/bestuur/bestuursdossiers/Nijmegen-aardgasvrij/Warmtevisie-Nijmegen-2018-180626.pdf

[3]https://www.stedin.net/over-stedin/pers-en-media/persberichten/eerste-huizen-verwarmd-met-waterstof-komen-in-rotterdam-rozenburg

[4]https://www.berenschot.nl/actueel/2018/oktober/co2-neutrale-warmtenetten/

[5]http://www.wattisduurzaam.nl/5969/energie-opwekken/zonne-energie/zonnestroom-mexico-duikt-4-dollarcent-per-kilowattuur/

[6]https://www.duurzaambedrijfsleven.nl/energie/30369/waterstof-toepassingen

[7]https://www.pragma-industries.com/products/light-mobility/

[8]https://medium.com/the-future-is-electric/hydrogen-still-has-some-potential-as-a-transportation-fuel-c693e8cdf375

[9]https://www.businessinsider.nl/zijn-waterstofautos-in-de-toekomst-onmisbaar-deskundigen-denken-van-wel-dit-is-waarom/

[10]https://www.hydrogenics.com/2015/10/15/hydrogenics-joins-german-h2fly-consortium-to-enable-zero-emission-passenger-flights-using-fuel-cell-technology/

[11]https://www.ship-technology.com/features/featureis-there-a-future-for-hydrogen-powered-ship-propulsion-5731545/

[12]http://www.wattisduurzaam.nl/15443/energie-beleid/tien-peperdure-misverstanden-over-wondermiddel-waterstof/

Energy storage: The missing link

Hornsdale Energy Reserve Australia – Photo TESLA

Many are convinced of the value of sustainable energy and the number of proponents continues to grow. Nor is energy storage an issue anymore. In this short essay, I discuss three different methods for storing energy[1].ย 

A forth solution, storage in hydrogen, will be dealt with in a next article.

Storage in batteries

For the time being, Tesla has built the largest energy storage battery in the world in South Australia with a power of 100 megawatts and a storage capacity of 129 megawatt-hours[2]. The electricity comes from a local wind farm. The battery has immediately proven its value. In the event of a recent power outage, it restarted the supply of energy many times faster and without any problems for the users than the available gas turbines. Moreover, for a price that is 90% lower. It is very plausible that a storage system of sufficient size could have prevented the problems at Schiphol half a year ago due to a short-circuit in a Tennet cable[3].

Vattenfall uses 500 BMW i3 batteries for its energy storage project in Wales[4]. Their joint power is 22 megawatts and they are fed by of 76 wind turbines. They supply 13% of the electricity needs of all households in Wales annually.

The projects mentioned-above are examples of centralized storage facilities for large-scale delivery of renewable energy. The Amsterdam virtual power plant is a small-scale example[5]. Here 50 households produce electricity with solar panels, store them in-house and trade them if the price on the energy market is the most favorable. Tesla will do the same in Australia, but with 50,000 households[6]. The company is working on a huge virtual power plant. Each household has solar panels, with a power of 5 kilowatts and a Tesla Powerwall 2 battery with 13.5 kilowatt-hours capacity. The power of plant as a whole is 250 megawatts and its storage capacity 675 megawatt-hours.

Neighborhood battery – Photo DNV GL

Energy production and storage in the Netherlands will contain both large and small-scale elements. In the report Feasibility and scalability of the neighborhood battery, DNV GL investigates the contribution to the storage of energy in the Netherlands of small-scale energy storage systems, also known as neighborhood batteries[7]. Their construction is simple and the impact on the environment is limited. The concept of the neighborhood battery is well applicable in residential areas. It enables peer-to-peer exchange and trading of electricity.

The Amsterdam Energy Arena is an example of the application of a neighborhood battery. Its storage capacity is 3 megawatts[8]. Energy comes from 4200 solar panels on the roof of the stadium. This virtual power plant will supply power in the immediate vicinity and is also a buffer for the grid.

The grid of the Amsterdam Energy Arena – image Amsterdam Arena.

All projects that have been discussed up to now deploy Litihum (li’ion) batteries. The fast-growing demand makes lithium increasingly scarce and expensive. That is why alternatives are sought. One is the manganese-hydrogen battery[9], another the silicon battery[10]. The latter might have a storage capacity that is ten times larger than that of the li’ion battery. However, it will take years before both are on the market.

Test set-up heat storage in salt – Photo TNO

Heat storage in salt

The storage of heat is very simple. All you need is a block of salt of two cubic meters. This will provide enough energy to heat your home throughout the winter: Thermal solar collectors convert sunlight into heat. The heat causes a chemical reaction in the salt, resulting in its dehydration. Conversely, adding water to the dry salt releases heat. 

PhD student Pim Donkers (TU / e) investigated how that process works exactly and which salt you can use best[11]. The biggest problem was the degeneration of the salt, which gradually reduced its storage capacity. 

The Dutch research institute TNO has solved this problem by influencing the properties of the salt used[12]. The advantage is obvious; salt is cheap and widely available. TNO is collaborating with nine companies in eight European countries to develop this invention into a market-ready product within the framework of the European project CREATE. A demo house that is supplied with heat in this way will be open for the public in short notice. 

For several years, Marnix ten Kortenaar has been working on the development of the sea salt battery in his company Dr. Ten[13]. In all its simplicity, the principle is a container with dissolved sea salt and carbon electrodes. The Gridflex project is a pilot in the Dutch village of Heeten, deploying 25 salt batteries and that aims to create a local energy market[14]. The solar energy is generated, stored, traded and consumed completely locally. For this pilot, Energy cooperative Endona was granted exemption from the Dutch Electricity Act[15].  

A third example comes from the German company EWE that intends to use salt domes for the storage of electricity[16], based on the principle of the redox battery[17].

The largest redox battery in the world – Image EWE

The project is called brine4power. A positive and a negatively charged electrolyte form the basis for this ‘natural’ battery, starting from the ions of ordinary salt[18].

A test set-up is realized in containers. Their storage capacity will gradually be increased to 2500 kilowatt-hours. Next, the storage of the electrolytes in salt domes will be piloted . This trial will take place in Jemgum along the Ems, near Groningen. EWE now uses these domes for the storage of gas. In 2023 ultimately, the battery will consist of two salt domes with a volume of 100,000 m3 and a total storage capacity of 700 megawatt-hours. As far as is known yet, no harmful effects are attached to this form of sustainable energy management. 

Energy storage with water 

Plan Lievense 1981 – Drawing brothers Dasย 

One of the oldest and still most common way of storing energy is pumping water to reservoirs with the help of surplus electricity. In times of energy scarcity, this water is used to generate hydro-energy. In the early 1980s, Luc Lievense designed a number of applications for this principle that could be used by the Netherlands[19]: Artificial lakes in the Markerwaard and even in the North Sea varying in height from a few ten to hundred (!), meters. 

It soon became clear that maintaining one or two conventional power plants for peak capacity was much cheaper. 

Nowadays, the idea of heat storage in water or in another liquid, follows another track: Excess energy is converted into heat which is that is stored in water[20]. The company Ecovat has developed a storage vessel (‘the ecovat ยฉ’) in which 1500 m3 of water is stored underground for a period of 6 months with a temperature of 90 ยฐ C and a yield of 90%.[21]

Cross-section of an ecovat ยฉ – Figure Ecovat

The ecovat ยฉ is a double-walled vessel. Heat exchangers between the double wall provide for the extraction or addition of heat to the water in the vessel. The water that runs through the heat exchanger is heated with sustainable heat from local geothermic sources , waste heat and solar energy. The ecovat ยฉ is also equipped with control software. This ensures, among other things, that action is taken on the basis of current weather forecasts and energy prices. 

A demonstration project has been realized in the Dutch village of Uden.  This project has a capacity of 88,000 kilowatt-hours and can supply up to 1,000 homes with heat. Ecovat works together with Enexis, a regional grid operator in the Netherlands. Ecovat is part of a consortium called Flexible Heat and Power (FHP). This consortium is co-financed under Horizon 2020. 

The reduction of the production of natural gas production in the Netherlands has increased the urgency of the question from where we will get our heat in the future. Sustainable sources like wind, sun and earth are plentiful, provided huge investment to make them available.  For the purpose of storing several alternatives are available too, which enables making locally-adapted choices. 


[1]https://www.lazard.com/perspective/levelized-cost-of-energy-2017/

[2]https://www.duurzaambedrijfsleven.nl/energie/27113/tesla-gaat-voor-grootste-virtuele-energiecentrale-bestaande-uit-50000-huishoudens

[3]https://www.volkskrant.nl/nieuws-achtergrond/ik-weet-het-even-niet-zegt-ict-schiphol~bdcf9424/?utm_campaign=shared%20content

[4]https://www.duurzaambedrijfsleven.nl/energie/23689/alfen-levert-mega-energie-opslag-van-bmw-batterijen-aan-nuon

[5]https://www.expirion.nl/blog-3–burgers-bouwen-eigen-virtuele-elektriciteitscentrale.html

[6]https://electrek.co/2018/02/04/tesla-powerwall-solar-virtual-power-plant/

[7]https://www.dnvgl.nl/publications/haalbaarheid-en-schaalbaarheid-van-de-buurtbatterij-113722

[8]https://www.duurzaambedrijfsleven.nl/stad-van-de-toekomst/29203/hoe-148-tweedehands-elektrische-auto-accus-de-arena-van-stroom-voorzien

[9]https://www.duurzaambedrijfsleven.nl/energie/28415/nieuwe-batterij-voor-goedkope-opslag-hernieuwbare-energie

[10]https://www.duurzaambedrijfsleven.nl/energie/28421/duitse-onderzoekers-ontwikkelen-silicium-accu-met-hoge-opslagcapaciteit

[11]https://www.cursor.tue.nl/nieuws/2015/november/sluitstuk-zout-als-verwarming/

[12]https://www.tno.nl/nl/aandachtsgebieden/bouw-infra-maritiem/roadmaps/buildings-infrastructure/energiepositieve-gebouwde-omgeving/warmtebatterij-doorbraak-opslag-duurzame-energie/

[13]https://www.buurkracht.nl/nieuws/thuis-energie-opslaan-met-een-zeezoutbatterij

[14]https://www.natuurenmilieuoverijssel.nl/friksbeheer/wp-content/uploads/2017/10/energievoorziening-in-de-toekomst-GridFlex-Heeten.pdf

[15]https://www.rvo.nl/subsidies-regelingen/projecten/grid-flex-heeten

[16]https://www.ewe.com/de/presse/pressemitteilungen/2017/06/ewe-plant-grรถรŸte-batterie-der-welt-ewe-ag

[17]https://www.deingenieur.nl/artikel/redoxbatterij-levert-buffer-boerenstroom

[18]https://www.ewe-gasspeicher.de/home/b4p

[19]https://www.deingenieur.nl/artikel/lievense-de-man-van-het-opslagbekken

[20]http://www.dgem.nl/nl/andere-duurzame-energie-oplossingen/thermische-energieopslag-systemen

[21]https://www.ecovat.eu

Smart building: The long way to a circular economy

 

 

afbeelding1
Demolition waste โ€“ Photo Jim Henderson Licensed under Creative Commons

 

Possibly, in 2050 the word wasteย can be removed from our dictionaries. At that time, the Dutch economy will be circular according to the government. Meaning in essence that all raw materials are reused infinitely. In order to reach this goal, an agreement with respect to the use of raw materials has been concluded between 325 parties. Its first milestone is halving the use of primary raw materials before 2030[1].

Many are sceptical of the outcomes of this agreement. Admittedly, 38.7% of the Dutch population feels that we are on the right track, although progress is slow. Jan Jonker[2], professor of business administration at Radboud University, is more pessimistic:ย  We do not think circular yet. Institutions, from legal to fiscal, are fully geared to the linear economy.

Amsterdam is making progress. In 2015, the municipality explored opportunities for a circular economy, which have been published in Amsterdam Circular: Vision and roadmap for city and region[3]. Dozens of projects have been started, albeit mostly on a small scale and starting from a learning-by-doing perspective.

The report Amsterdam circular; evaluation and action perspectives[4](2017) is an account of the evaluation of these projects. It concludes that a circular economy is realistic. ย The city has also won the World Smart City Award for Circular Economy for its approach โ€“ facilitating small-scaled initiatives directed at metropolitan goals. Nevertheless, a substantial upscaling must take place in the shortest possible time.

Below, I focus on the construction sector, which includes all activities related to demolition, renovation, transformation and building. Its impact is large; buildings account for more than 50% of the total use of materials on earth, including valuable ones such as steel, copper, aluminum and zinc. In the Netherlands, 25% of CO2 emissions and 40% of the energy use comes from the built environment.

By circular construction, we mean design, construction, and demolition of houses and buildings focused on high-quality use and reuse of materials and sustainability ambitions in the field of energy, water, biodiversity, and ecosystems as well. For example, the Bullitt Centerin Seattle, sometimes called the greenest commercial building in the world, is fully circular[5]

afbeelding2
Photo: James Provost licensed under Creative Commons

The construction sector is not a forerunner in innovation but of great importance with respect to circularity goals. The Amsterdam metropolitan region is planning to build 250,000 new homes deploying circular principles before 2050.

The evaluation of the projects that have been set up in response to the Amsterdam Circular Planย has yielded a number of insights that are important for upscaling:

The most important is making circularity one of the key criteria in granting building permits.

The others are the role of urban planning and the contribution of urban mining, which will be dealt with first.

The role of urban planning

Urban planning plays a crucial role in the promotion of circularity. It is mandatory that all new plans depart from circular construction; only then a 100% reuse of components after 2050 is possible. The renovation of existing houses and buildings is even more challenging than the construction of new ones. Therefore, circular targets must also apply here. Dialogue with the residents, and securing their long-term perspective is essential. The transformation of the office of Alliander in Duiven into an energy neutral and circular building is exemplary (photo below).

afbeelding3
Photo: VolkerWessels Vastgoed

The contribution of urban mining

Existing buildings include countless valuable materials. The non-circular way of building in the past impedes securing these materials in a useful form during the demolition process. Deploying dedicated procedures enables the salvation of a large percentage of expensive materials. In this case, we speak of urban mining. Unfortunately, at this time re-used materials are often more expensive than new ones.

Therefore, a circular economy will benefit with a shift from taxes on labor to taxes on raw materials.

Issuing building permits

The municipality of Amsterdam made a leap forwards with respect to issuing building permits to enable circularity[6]. Based on the above-mentioned definition of circular building, five themes are addressed in the assessment of new building projects: Use of materials, water, energy, ecosystems as well as resilience and adaptivity. Each of these themes can be scrutinized from four angles:

– the reduction of the use of materials, water and energy

– the degree of reuse and the way in which reuse is guaranteed.

– the sustainable production and purchase of all necessary materials.

– Sensible management, for example, full registration of all components used.

Application of these angles to the five themes yields 32 criteria. A selection of these criteria is made in each project, depending from whether the issuing of building permits or renovation is concerned, and also from where the building takes place. For instance, a greenfield site versus a central location in a monumental environment.

One of the projects

In recent years, the municipality of Amsterdam has included circular criteria in four tenders: Buiksloterham, Centrumeiland, (residential buildings), the Zuidas (offices) and Sloterdijk (retail and trade). On the Zuidas, the first circular building permit was granted in December 2017. 30% of the final judgment were based on circularity criteria.

The winner is AM, in collaboration with Team V Architects. In their project Cross over, they combined more than 250 homes with offices, work space for small businesses and a place for creative start-ups. The project doesnโ€™t have a fixed division between homes and offices. Reuse in future demolition is facilitated by a materials passport and by building with dry connections, enabling easy dismantling.

afbeelding14png
Crossover โ€“ photo Zwartlicht

Need to organize learning

The detailed elaboration of the 32 criteria for circularity to be applied in tenders, covers more than 40 densely printed pages. One cannot expect from potential candidates to meet the requirements routinely. It would therefore be welcomed if the municipality of Amsterdam shared its knowledge with applicants collectively during the submission process.

I also would welcome ‘pre-competitive’ cooperation by communities with manufacturers, knowledge institutions, clients and construction partners with the aim to develop circular building.

This involves for instance standardization of the dimensioning of components (windows, frames, floorboards) and the ‘rehabilitation’ of ‘demolished’ components while maintaining the highest possible value. This might be combined with a database in which developers can search for available components.

In Zwolle, another strategy is followed: the municipality, housing corporations and construction companies have formed a Concilium[7], which aims to significantly expand the already planned construction of houses, using circular principles.

Circularity requires closing circles. Collaboration within the supply-chain is one of these.

[1]https://www.rijksoverheid.nl/documenten/rapporten/2016/09/14/bijlage-1-nederland-circulair-in-20

[2]https://www.duurzaambedrijfsleven.nl/circulaire-economie/27945/de-stand-in-het-land-zijn-we-al-een-beetje-circulair

[3]https://www.amsterdam.nl/wonen-leefomgeving/duurzaam-amsterdam/publicaties-duurzaam/amsterdam-circulair-0/

[4]https://www.amsterdam.nl/wonen-leefomgeving/duurzaam-amsterdam/publicaties-duurzaam/amsterdam-circulair-1/

[5]http://www.bullittcenter.org

[6]https://www.amsterdam.nl/wonen-leefomgeving/duurzaam-amsterdam/publicaties-duurzaam/amsterdam-circulair-1/

[7]https://www.weblogzwolle.nl/nieuws/61325/ambitieus-plan-voor-zwolse-woningmarkt.html

 

Are smart cities also sharing cities?

Aside from smart and resilient, a growing number of cities is wielding the adjectieve sharing. Seoul was in 2013 the first self-appointed Sharing City in the world. In 2015 Amsterdam claimed to be the first one in Europe.ย 

San Francisco

However, the most eyecatching initiatives with respect to sharing originate from one city in particular โ€“ San Francisco โ€“ the hometown of sharing-oriented start-ups like Twitter, Dropbox, Lyft and Airbnb. A sharing aptitide is characterizing the life style of many of its millennial population: co-working, co-living (also due to sky-rocketing rents), eschewing car-ownership and a preference for living in the city center.

sharing cities San Francisco brand of โ€˜sharingโ€™ is commercial in the first place and has beside winners also many losers, for instance the drivers of companies like Uber and Lyft and those in other taxi-companies. The unprecedented influx of tourists in cities like Amsterdam and Barcelona due to the succes of one of the sharing economy icons, Airbnb, also will not contribute to its popularity.

For this reason Duncan McLaren & Julian Agyeman plea for a brand of real sharing cities, based on just sustainabilities. In their seminal book Sharing citiesโ€™ (MIT Press, 2015) they elaborate examples from Seoul, Copenhagen, Amsterdam and Medellin to clarify a more inclusive communal sharing paradigmthat goes beyond commercial motives. Real sharing cities relate questions with respect to social needs and welfare โ€“ economic opportunity included โ€“ to social justice and environmental limits imposed by supporting ecosystems.

Summing up, sharing means that more persons use the same product or service without owning it. This can apply to the (re)use of bikes, cars, appartments of books. But the sharing paradigm includes also includes recycling, common facilities for water and energy, credit unions and cooperative banks. Sharing might be motivated by cost reduction by social justice or by decreasing our ecological footprint.

Seoul

Communal sharing is connected with the sources of wellbeing: Fresh air, water, energy, education, cure and care, socializing, inclusion and liveable space. The city of Seoul offers many examples in this respect. The concept of jeong plays a key role. People believe that being kind and cooperative will benefit all in the long term. More specific, the administration of the city is promoting and supporting collaboration and caretaking in the densely populated apartment blocks. At the same time mayor and eldermen value listening to the inhabitants. People can easily utter complaints and requests talking in the โ€˜listening earโ€™ in front of the town hall (photo below).

sharing cities

The city administration also plays an intermediate role in the economic development. Start-ups are supported by the โ€˜Dreambankโ€™, a pooled facility of 20 banks.

Medellin

sharing citiesOtherย cities offer additional insight in the intermediate role of city government to enhance the โ€˜sharing potentialโ€™ of their towns. An striking example is Medellin, the second town in Colombia and the former center of drug trafficking, also known as โ€˜murder capitaโ€™ of the world. After that military shot the infamous gangleader Pablo Escobar, the city government started to repair the ruined social fabric of the town. It invested large sums in education and communal facilities, often in iconic buildings like the Biblioteca de Espagna in the middle of poor areas, to enable their inhabitants regaining some feeling of proudness.

At the same time all isolated parts of the town were connected by a new public transport system of metrolines, gondolas and escalators. Participatory budgetting was introduced an instrument to increase citizen involvement.

Copenhagen and Amsterdam

McLaren & Agyeman also feature Copenhagen and Amsterdam as examples of โ€˜social urbanismโ€™, because these cityโ€™s sharing policies are community motivated in the first place. Copenhagen has improved the liveabllity of its city center with an infrastructure based on the use of bicycles. Amsterdam did the same with its dense public transport network and creating bikelanes as well. In addition Amsterdamโ€™s social housing policy has accomplished more integration of its immigrant population than many other cities. The city also facilitates a huge number of โ€˜commoningโ€™ activities.

sharing cities

Reflecting upon the cases above, a couple of concepts demand clarification.

Collaboration

Collaboration is used often as an equivalent for sharing. This is not necessary true. Collaboration refers to collective action to get things done; sharing usually involves individual action. Collaboration happens in the economic domain โ€“ for instance cooperative work, self-managed companies and community currences and in the social domain as well, for instance commoning activities like gardening, cooking, the exploitation of collective housing, community shops and even swimming pools and transport. Apart from the direct benefits of collaboration, its value is also the growth of social capital. As a consequence, collaboration is a necessary extension of the concept of sharing.

Connectivity

Commercial sharing depends heavily from the availability of IT-platforms, think of Airbnb and Uber. But connectivity is also critical for certain social forms โ€˜sharingโ€™, for instance instaneous mapping of damagein case of earthquakes or flooding in order to support rescuing activities.

Sharing versus smart

Sharing and smart are not equivalents; however accentuating its sharing capacity, might be a way to for smart cities to be more specific about its characteristics. My description of Smart City 3.0 includes many characteristics of the sharing city that are described above.

Amsterdam is profiling itself for some years as a smart city. Recently, the city also embraced the adjectives โ€˜sharingโ€™ and โ€˜collaborativeโ€™. I doubt the wisdom of this policy. The content of the missions of Amsterdam Smart City and Amsterdam Sharing city do not differ that much. Therefore applying two adjectives is confusing, given that most citizens still have to become acquaintant with the benefits and challenges of living in a smart city. From a communication viewpoint, I would have chosen to clarify being smart with a small number of key words. Sharing might be one of these. My choice of the other ones would have been: citizen-based, inclusive, entrepreneurial, collaborative, sustainable and IT-enabled. Maybe my advise is still useful.

This is an episode in a series that elaborates aspects of smart cities. This article has already been published in Smart City Hub.

Are smart cities also sharing cities?

Aside from smart and resilient, a growing number of cities is wielding the adjectieve sharing. Seoul was in 2013 the first self-appointed Sharing City in the world. In 2015 Amsterdam claimed to be the first one in Europe.ย 

San Francisco

However, the most eyecatching initiatives with respect to sharing originate from one city in particular โ€“ San Francisco โ€“ the hometown of sharing-oriented start-ups like Twitter, Dropbox, Lyft and Airbnb. A sharing aptitide is characterizing the life style of many of its millennial population: co-working, co-living (also due to sky-rocketing rents), eschewing car-ownership and a preference for living in the city center.

sharing cities San Francisco brand of โ€˜sharingโ€™ is commercial in the first place and has beside winners also many losers, for instance the drivers of companies like Uber and Lyft and those in other taxi-companies. The unprecedented influx of tourists in cities like Amsterdam and Barcelona due to the succes of one of the sharing economy icons, Airbnb, also will not contribute to its popularity.

For this reason Duncan McLaren & Julian Agyeman plea for a brand of real sharing cities, based on just sustainabilities. In their seminal book Sharing citiesโ€™ (MIT Press, 2015) they elaborate examples from Seoul, Copenhagen, Amsterdam and Medellin to clarify a more inclusive communal sharing paradigmthat goes beyond commercial motives. Real sharing cities relate questions with respect to social needs and welfare โ€“ economic opportunity included โ€“ to social justice and environmental limits imposed by supporting ecosystems.

Summing up, sharing means that more persons use the same product or service without owning it. This can apply to the (re)use of bikes, cars, appartments of books. But the sharing paradigm includes also includes recycling, common facilities for water and energy, credit unions and cooperative banks. Sharing might be motivated by cost reduction by social justice or by decreasing our ecological footprint.

Seoul

Communal sharing is connected with the sources of wellbeing: Fresh air, water, energy, education, cure and care, socializing, inclusion and liveable space. The city of Seoul offers many examples in this respect. The concept of jeong plays a key role. People believe that being kind and cooperative will benefit all in the long term. More specific, the administration of the city is promoting and supporting collaboration and caretaking in the densely populated apartment blocks. At the same time mayor and eldermen value listening to the inhabitants. People can easily utter complaints and requests talking in the โ€˜listening earโ€™ in front of the town hall (photo below).

sharing cities

The city administration also plays an intermediate role in the economic development. Start-ups are supported by the โ€˜Dreambankโ€™, a pooled facility of 20 banks.

Medellin

sharing citiesOther cities offer additional insight in the intermediate role of city government to enhance the โ€˜sharing potentialโ€™ of their towns. An striking example is Medellin, the second town in Colombia and the former center of drug trafficking, also known as โ€˜murder capitaโ€™ of the world. After that military shot the infamous gangleader Pablo Escobar, the city government started to repair the ruined social fabric of the town. It invested large sums in education and communal facilities, often in iconic buildings like the Biblioteca de Espagna in the middle of poor areas, to enable their inhabitants regaining some feeling of proudness.

At the same time all isolated parts of the town were connected by a new public transport system of metrolines, gondolas and escalators. Participatory budgetting was introduced an instrument to increase citizen involvement.

Copenhagen and Amsterdam

McLaren & Agyeman also feature Copenhagen and Amsterdam as examples of โ€˜social urbanismโ€™, because these cityโ€™s sharing policies are community motivated in the first place. Copenhagen has improved the liveabllity of its city center with an infrastructure based on the use of bicycles. Amsterdam did the same with its dense public transport network and creating bikelanes as well. In addition Amsterdamโ€™s social housing policy has accomplished more integration of its immigrant population than many other cities. The city also facilitates a huge number of โ€˜commoningโ€™ activities.

sharing cities

Reflecting upon the cases above, a couple of concepts demand clarification.

Collaboration

Collaboration is used often as an equivalent for sharing. This is not necessary true. Collaboration refers to collective action to get things done; sharing usually involves individual action. Collaboration happens in the economic domain โ€“ for instance cooperative work, self-managed companies and community currences and in the social domain as well, for instance commoning activities like gardening, cooking, the exploitation of collective housing, community shops and even swimming pools and transport. Apart from the direct benefits of collaboration, its value is also the growth of social capital. As a consequence, collaboration is a necessary extension of the concept of sharing.

Connectivity

Commercial sharing depends heavily from the availability of IT-platforms, think of Airbnb and Uber. But connectivity is also critical for certain social forms โ€˜sharingโ€™, for instance instaneous mapping of damagein case of earthquakes or flooding in order to support rescuing activities.

Sharing versus smart

Sharing and smart are not equivalents; however accentuating its sharing capacity, might be a way to for smart cities to be more specific about its characteristics. My description of Smart City 3.0 includes many characteristics of the sharing city that are described above.

Amsterdam is profiling itself for some years as a smart city. Recently, the city also embraced the adjectives โ€˜sharingโ€™ and โ€˜collaborativeโ€™. I doubt the wisdom of this policy. The content of the missions of Amsterdam Smart City and Amsterdam Sharing city do not differ that much. Therefore applying two adjectives is confusing, given that most citizens still have to become acquaintant with the benefits and challenges of living in a smart city. From a communication viewpoint, I would have chosen to clarify being smart with a small number of key words. Sharing might be one of these. My choice of the other ones would have been: citizen-based, inclusive, entrepreneurial, collaborative, sustainable and IT-enabled. Maybe my advise is still useful.

This article was published before in the Smart City Hub

Smart cities or resilient cities. Does it make any difference?

Resilient city

Worldwide 55 percent of all people is living in cities. They cover 4 percent of the landsurface, use 67 percent of all energy that is produced and are responsible for 70 percent of the emission of greenhouse gasses.ย Cities are not only the most important economic centres of the world, their political power is also increasing. Observers believe that growing sustainability will result in the first place from policies issued by the worldโ€™s largest cities instead of by national governments.

In order to express their intentions, many cities showcase themselves with adjectives such as โ€˜smartโ€™, resilientโ€™, sustainableโ€™, โ€˜sharingโ€™ and the like. These predicates refer to results that already have been accomplished, however small, but they express their mission for the future in the first place.

An inventory of current literature (1) resulted in more then 30 definitions of smart city. Most cited (348 times) is the definition of Caragliu (2009): โ€˜We believe a city to be smart when investments in human and social capital and and traditional (transport) and modern (ICT) communication infrastructure fuel sustainable economic growth and a high quality of life, with a wise management of natural resources, through participatory governance.โ€™

Rotterdam

The first appearance of the concept resilience in connection with urban policy dates back toย  2002. However, only in 2012 the frequency of searches in Google for resilient city started to boom.

In contrast with smart city, the number of definitions of resilient city is limited. Cities who call themselves resilient, like Rotterdam and The Hague in The Netherlands, claim to build capacity withinย individuals, communities, institutions, businesses, and systems to survive, adapt, and grow no matter what kinds of chronic stresses and acute shocks they experience.

Chronic stresses weaken the fabric of a city on a daily or cyclical basis. Examples include: high unemployment, overcrowded or inefficient public transportation systems, endemic violence and chronic food and water shortages. Acute shocks are sudden, sharp events that threaten a city. Examples include earthquakes, floods, disease outbreaks and terrorist attacks.

The concepts smart and resilient city have different roots. Large technology companies, like Cisco, IBM, Siemens, Philips started promoting to become a smart city expert ten years ago during the economic crisis as part of their strategy to find new markers and to attract new customers.

The use of the concept resilient city is promoted by international organizations and associations of cities in order to improve cityโ€™s capabilities to deal with hazards like the hurricanes Katarina in the New Orleans region (2005) and Sandy along the eastcoast of North America (2012).

As evidenced in the definition mentioned above, the concept hazard has been broadened to include external pressures in general, varying from climate change and environmental degradation to poverty and traffic congestion.

The concept smart city has also evolved. In another article I made a distinction between smart city 1.0, 2.0 and 3.0. These descriptions mark the evolution from the mere accentuation of the deployment of ICT as a key tool to fuel economic growth and competitiveness, to a multi-objective and participatory strategy capable to tackle problems of environmental deterioration, social equity and inclusion and building social capital.ย 

The Resilient City Movement has been boosted in 2014 when the Rockefeller Foundation invested $100 million in the 100 Resilient Cities Challenge. Partly because its institutionalization, the policies of the cities partnering in the 100 Resilient City Challenge have more in common than those of the self appointed smart cities. The so-called City Resilience Framework, plays a key role in each of the participating cityโ€™s strategy.

The city Resilience framework

Based upon this framework, an index has been developed. Cities can calculate an indicator of their resilience with respect to the topics mentioned above and subsequently develop a strategy to improve weak points. The result of the analysis made in Rotterdam is indicated below. At this time 30 cities have published strategy reports to increase their resilience in the next decade. Among them are Rotterdamย and Athens, a city that came with a brilliantly elaborated action report. A brand new report, Cities taking Action, written on occasion of the World Summit in July 2017, offers an anthology of what has been reached during the recent past within a selection of the 100 participating cities.

An analysis of definitions of smart and resilient cities and of characteristics attributed to each of these concepts is revealing a very broad overlap as is demonstrated in the box below.

As a consequence, some publications consider resilience as a characteristic of smart cities. Others believe that resilience will replace smart.ย I am not in favor of the assimilation of one of these terms by the other. Both concept have there own roots and are on their way to become meaningful for citizens. Therefore, they better can be treated as comparable, as is understood well by one of the platforms. Otherwise, the City Resilience Framework is an extremely useful policy making tool for smart cities because of its high level of elaboration.

Taking into account the convergence of definitions, both smart and resilient cities are building capabilities to deal with and prevent chronic stress and acute shocks, deploying a broad range of technologies. They enable individuals, communities, institutions and businesses to participate in the definition and execution of policies. They invest in the growth of human and social capital by education, meaningful work, communing, and sharing, and including all of its citizens to live in a decent way.

This is the 5th episode in a series of 6 articles about smart cities and the like. This article has already been publicised in the Smart City Hub

 

[1] Resilient cities: A systematic approach for developing cross-sectoral strategies in the face of climate change:ย Rocco Papa. Adrina Galderisi, Maria Christina Vigo Majello, Erica Saretta. in:ย TeMA Journal of Land Use Mobility and Environment 1 (2015)

How Google connects with the smart city movement

โ€˜Whatever we do, we know the world doesnโ€™t need another plan that falls into the same trap as previous ones: treating the city as a high-tech island rather than a place that reflects the personality of its local population’.
These words are from Daniel Doctoroff. In 2016 Larry Page (Google) invited him to be chairman/CEO of a new Alphabet enterprise, Sidewalks Labs. This company aims contributing to the transformation of urban environments through technologies that can drive efficiency, raise accountability, and foster a deeper sense of community. In others words, connecting Googleโ€™s expertise to the Smart City movement.โ€™
ย 

Choosing Doctoroff as obvious. He was deputy mayor for city development in the Bloomberg administration. He is deeply concerned with the problems of American cities and at the same time he believes in the power of science and technology to solve them. In his view the Fourth Technological Revolution will integrate five core technologies:

  • ubiquitous connectivism
  • sensing
  • social networks
  • computer power
  • robotics.

Deployed together, these technologies will significantly decrease mobility costs for citizens and for the community at large as well, personalize services and improve safety.

Technologists and urbanists

The ultimate aim is improving the quality of life in cities and not the deployment of technology as such. Therefore Doctoroff carefully staffed Sidewalks Labs with technologists and urbanists. In his words, the first group is in general insensitive to the complexities of cities. The second group does not understand technology: Protecting the social fabric of cities comes first. Both groups talk different languages and do not communicate. Doctoroff believes that their successful collaboration can make the difference between Sidewalk Labs and technology-driven Smart City initiatives.ย 

Shortening decision making

It is too early to judge whether Sidewalk Labs will fulfill these promises. The published research so far (a couple of titles is shown in this article) shows a great deal of involvement in the problems of the American cities, like the crumbling infrastructure, the lack of accessible health care, and the unaffordability of housing. The modeling of these problems, taking into account realistic population data, enables fast simulations of the impact of solutions and thus shortening of length of the decision making process. This research has revealed ingenious redesign of the public transport network, new models of integrated heath care and proposals that might significantly lower construction costs.

The implementation of solutions

Labs does not limit itself to figuring out solutions; the company is also taking care of their implementation by creating start-ups. For instance, Flow is mapping traffic and (public) transport pattern to optimize networks and thus meaningfully increasing mobility. Link NYC is replacing the 7000 payphones with super-fast free Wi-Fi hubs, paid by advertising on the large hub displays.

In its health care research Sidewalk Labs made clear that most medical problems have social and environmental roots, for instance bad food habits and air pollution. At the same time health care in the US is more expensive than in any other OECD country and its quality, accessibility in particular, is unsatisfying. When it comes to solutions, Sidewalk Labs is focusing on e-health, for instance monitoring patients and consulting physicians at distance.

Mismatch between definition of problems and that of solutions?

At ย this point I became aware of a growing feeling of discomfort with the strategy of Sidewalk Labs.ย 
Labs is brilliant in the realm of defining and modeling problems, freed from any reductionist bias. However, its search for solutions is technology-focused, for instance apps that offer real time affordable solutions for renting apartments or apps that shows vacant parking lots. Not to mention the free Wi-Fi facilities in New York. Flaws in the Smart City approach result partly from a technological bias in the definition of problems. Sidewalk Labs definitely cannot be blamed in this respect. But it fails to integrate technical and non-technical approaches in the the solution of problems. Exactly this is corresponding with distinction between Smart City 2.0 and Smart City 3.0 that I made recently.

Iย assume that the focus on technological solutions in inherent in Sidewalks Labโ€™s connection with Alphabet. The ultimate ambition of Sidewalks Labs is to reimagine cities from the Internet up. That is why Alphabet has created the company. In the end, Sidewalks Labsโ€™ mission is paving the way for new services to develop or to deliver by Google.
However, cities, their administrators and inhabitants are yearning comprehensive solutions for their problems. These solutions demand an integrated approach deploying high-tech, low-tech and also no-tech solutions. Here Sidewalks Labs falls short, in spite of Daniel Doctoroff inspiring citation above. Probably ongoing discussion between the technologists and the urbanists will enable this integration in the end.

This is the 4th episode in a series of 6 posts dealing with the ambiguities in smart city development. They were published earlier in smart city hub

Smart Cities 1.0, 2.0, 3.0. Whatโ€™s next?

Naamloos 5
Smart City 1.0
A Smart City 1.0 is a town that is maximizing the use of advanced technology as a lever for viability, sustainability, and control. These cities are often criticized because of their technology push and the influential role of large corporates, like IBM and CISCO.
Smart City 2.0
The predicate Smart City 2.0 is appropriate if technological tools explicitly are designed to cope with problems like pollution, sanitation, health and traffic in consultation with their citizens.ย Unfortunately, participation of citizens in formal decision-making structures and meetings is flawed and appeals to a small minority only.
Smart City 3.0
Meanwhile, a much larger number of citizens is involved in activities like gardening, food processing, improving the attractively of streets and even energy production. These activities, often referred to as commoning or place-making are deploying high-, low- or no-tech solutions. They connect every day collaborative acts with broader goals like social inclusion, democracy, enterprise creation and building social capital. Here, the predicate Smart City 3.0 is in order.

This post is about Smart Cities 3.0.

Until today, no city in the world can justify to be a Smart City 2.0 or 3.0. A limited number of cities might claim the predicate Smart City 1.0. The newly build suburb of Seoul, Songdo, probably is one of them (picture above). Amsterdam and Rotterdam are on their way towards Smart City 2.0. and possibly also towards Smart City 3.0. In both cities a number of collaborative projects are running. The Community Lovers Guideย offers well illustrated examples from these and other towns. Some of them are mentioned in this post. According to Tessy Britton, one of the authors, many of these projects operate in isolation, lack support and as a consequence their continuity depends on limited number of forerunners.

The benefits of a platform approach

In theory, a platform approach is a useful tool to initiate, support and link projects, create the roots of a participatory culture and coordinate contacts with external parties. The municipal authorities of West Norwood (South London) were willing to support the exploration of the the feasibility of an approach like this. The platform โ€“ named The Open Works โ€“ became visible when itsย  โ€˜headquarterโ€™ was opened in an empty shop.

screenshot 2
The headquarters of Open Works in West Norwood

Citizens were informed during informal and social meetings and any interested person was welcomed for a cup of tea in the headquarter. Within one year 20 projects have been initiated by groups of citizens and nearly 1000 people have participated more or less frequently.

A very readable and well-illustrated report is disclosing the results.

Key findings

The key findings below refer at the outcomes of the pilot project, but they are supported by experiences in other cases.
1. Building a dense and inclusive participatory ecology is feasible
Many citizens appear to be eager to participate in collaborative initiatives, provided these are activity-based. Inclusiveness is within easy reach if initial projects are chosen properly. For instance, multi-cultural cooking during information markets and festivals.
2. The number of activities has to pass a certain threshold to ignite a participatory culture
Adequate scaling-up of the number and the variety of activities is necessary to prevent isolation of single projects and to fuel the development of a particpatory culture. This threshold is is pretty high: ten percent of the citizens will have to meet three times a week on average. Besides, within a walking distance of fifteen minutes at least five alternativeย projects to be found.

1460110652118

3. The desirability of different types of participation

A first type are collaborative activities, focussing at daily needs. The second type are community ventures that might develop into social enterprises. Here a small group of people is offering services for the larger community. A well-known example is The Library of Things, based at sharing of utensils and equipment. In time these activities might create economic value and jobs.

banner-5-community
Pendrecht University (Rotterdam)

4. Projects emerge from needs of citizens
Projects are organized โ€˜on the flowโ€™. Written plans nor formal approval are necessary and some seed capital is available. Support of the platform (โ€˜the headquarterโ€™) appears of critical value. However the participants stay responsible and do the work, finding supplementary funding included.
5. Revival of community services is within reach
A participatory culture might successfully contribute to the reanimation of dilapidated services, like local stores, a minibus connection with major subway stations, refurbishment of abandoned parcels, crime preventing surveillance and reopening of closed amenities like a former community swimming pool . All based on voluntary work and supported by municipal authorities.

images-2 kopie
Menโ€™s sheds (in many cities)

6. Care-taking of vulnerable citizens
Participation of vulnerable citizens in community activities sometimes prevent them becoming homeless, alcoholic, drug-addicted or criminal. Recent research, summarized in the above-mentioned Open Works final report, is confirming Putnamโ€™s conclusion that community activities increase a societyโ€™s social capital and contribute to the physical and mental health of the citizens involved.
7. The platform approach has proved to be valuable
The three parttime staff members ignited projects, brought people together, organized meetings, took care of administrative burdens, intermediated with external parties and were able to pay small sums to deal with project expenses. The municipal investment in the platform was โ‚ฌ10 per local resident.

screenshot
An energy company founded and managed by citizens

8. Municipal administration has to adapt
Cooperation between the city administration and the citizens wil be boosted if the municipality is willing to adapt its involvement to citizenโ€™s activities instead of pulling citizenโ€™s activities into the structures of the municipality. Here too platforms are indispensable intermediaries between the administration and the citizens.

Whatโ€™s next

At first continuation of the Norwood pilot for an additional period of two years was foreseen in view of scaling-up towards a larger territory. The people behind the Norwood case have been looking for a feasible opportunity. And they have found one.ย Over the next 5 years Participatory City will work with local residents and organisationsย in the borough Barking and Dagenham to create a new network of 250 projects and 100 businesses. The take-off is just now! See their new website or watch the short documentary below,
In case of success, this municipality might be the first city in the world to claim the predicate Smart City 3.0.ย Meanwhile other cities are on the same track, to mention only Amsterdam and Rotterdam. We can only hope that these cities learn from the West Norwood pilot and become tough opponents of Participatory City London North.ย Hopefully, in the near future Smart City 4.0 wil emerge, a city that offers all newly borns equal chances, where inequality is decreasing and where inclusivity is a matter of course.This is the third paper in a series of six, that have been published earlier in The Smart City Hub, a platform for research and opinions with regards to smart cities.