Plastics: The unnecessary paragon of the take-make-waste economy

Next months, these posts deal with the quest for bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

Plastics are versatile materials. However, their production contributes to greenhouse gas emissions and plastic waste threats our health. The way in which plastics have developed and are distributed illustrates that a circular economy stands or falls with product design. So far, the design of plastics reflects the ‘take-make-waste’ principle: Every year more than 300 million tons of plastic are produced worldwide, half of which are for single use. Only 10% or all plastics are made from recycled material. It can be different.

Plastic waste that ends up in nature degrades into micro plastics – plastic soup – and retains its chemical composition and toxic nature. Micro plastics eventually end up in the food cycle. More than 100 million tons of plastic already float in the oceans.

In the meantime, alternatives are being searched for, albeit far too late. Unilever leads the way[1]. The company currently produces 700,000 tons of plastic packaging. This will be reduced by 100,000 tons in 2025. Moreover, the company wants that all its plastic packaging becomes reusable, recyclable or compostable and that at least 25% recycled plastic is used in the production of new plastic[2].

Below is a brief overview of the different options.

Recycling

Preventing plastics from entering nature requires an extensive and costly system for collecting and separating waste and technology for high-quality recycling of the collected plastic waste.

The separation of waste

In case of a single-stream collection system, people throw plastic, glass, metals and paper into one collection bin. As a consequence, these items have to be separated. The video below shows the operation of a large-scale separation line.

As can be seen, quite a lot or human assistance is needed. New machines limit this unattractive work thanks to artificial intelligence. They are able to separate 20 different types of plastics[3].

Chemical recycling

One of the biggest hurdles in recycling plastics is its pollution, for instance as a result of added dyes. The Dutch company Ioniqa can chemically reduce PET waste to ‘virgin’ PET[4]. Large plastic users like Coca-Cola intent to co-operate with Ioniqa. The video below shows how chemical recycling works.

Use of sustainable raw materials (biobased plastics)

The advantage of using sustainable raw materials (biomass) in the production of plastic is the reduction of CO2 emissions. However, biomass is becoming increasingly scarce and its production can compete with food crops and forestry. Moreover, most bio-based plastics are not biodegradable. If they end up in litter, the effects are as harmful as those of other plastics. For these and reasons mentioned below, there are quite some disadvantages associated with biobased plastics.

Biologically degradable plastics

Ideally, these biologically degradable plastics are biobased materials, which are safely broken down in nature in short time. PHA for example. Unfortunately, years of research have not yet led to its large-scale production. 

Some other types of plastics such as PLA (biobased) and PBAT (not bio-based) are compostable, but only in an industrial environment. These types of plastics may be added to the organic waste. However, most consumers cannot distinguish between biodegradable, biobased and other types of plastics. As a result, many plastics unintendedly end up in the plastic soup.

Reuse

If plastic had been designed for a circular economy from the start, the emphasis would undoubtedly have been on reuse. This also applies to industrial applications such as PVC. Thanks to a substantial deposit, the majority of all plastics could be reused than.

Back to reusable packaging?

Together with Coca-Cola, Proctor & Gamble, Nestlé, Unilever has joined Loop, a platform that develops refillable packaging[5]. Supermarkets that deliver products at home can easily include them in their range. The video below shows how the system works.

Ban on some types of plastics

The collection of plastics still is still seriously inadequate and a large proportion of plastics ends up in nature as visual litter and return to our food chain as toxic plastic soup. This applies in particular to plastic bags, cups, trays for snacks and soft drinks bottles without a deposit. A ban seems to be the only way-out.


[1] https://www.duurzaambedrijfsleven.nl/recycling/32505/unilever-reductie-co2?q=%2Frecycling%2F32505%2Funilever-reductie-co2&utm_source=nieuwsbrief&utm_medium=e-mail&utm_campaign=Daily+Focus+9+Oktober

[2] https://medium.com/fast-company/250-organizations-are-joining-forces-to-end-plastic-waste-103736e5771d

[3] https://medium.com/scientific-american/can-robots-help-pick-up-after-the-recycling-crisis-aace4210472b

[4] https://www.duurzaambedrijfsleven.nl/industrie/31471/innovatie-ioniqa

[5] https://www.duurzaambedrijfsleven.nl/future-leadership/32641/verduurzaming-succesfactoren?q=%2Ffuture-leadership%2F32641%2Fverduurzaming-

Regional differences in the paths towards a circular economy

Next months, these posts deal with the challenges of Earthlings of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

Countries with a lower income are more “circular” than richer counterparts. Many residents simply cannot afford to throw away valuable material. In the informal sector, a great deal of economic activity revolves around sorting and reusing waste, including imported waste from rich countries. About 0.5% of the urban population in developing countries – 1.5 million in India alone – tries to make a living by collecting items from landfills, with all the health risks this entails. An estimated 270,000 people die each year from the incineration of waste. It is estimated that in 2025 landfills will cause 8 – 10% of global greenhouse gas emissions.

Every year Circle-Economy is publishing its Circularity Report. In the 2020 version, circular growth paths for three groups of countries are differentiated[1].

Build countries (for instance: India, Bangladesh, Nigeria, Pakistan and the Philippines)

These countries lack sufficient means to satisfy their basic needs, and it is not surprising that their economic activities mostly fall within the regenerative capacity of the earth. Most of these countries show progress in reducing poverty and their emerging middle class want to enjoy greater consumption. The building industry already is the second sector after agriculture.  70% of the buildings India needs in 2030 are yet to be built. 

Paths towards circularity:

  • Application of circular principles in construction (design for the future and energy-neutrality)
  • Education and developing entrepreneurial skills in the informal economy
  • Using residues from agriculture to develop a sizable bio economy

Growth countries (for instance: China, Indonesia, Brazil, Mexico, Vietnam and Egypt)

The second pathway relates to emerging economies characterized by fast economic growth and associated material consumption and services, rapid build-up of capital goods and an expanding industrial sector. They will continue to grow, but have to channel this growth by the application of circular principles.  

Paths towards circularity:

  • Channeling fast growing consumption through new service-based business and shared-use models and healthier principles. For instance, the reemergence in China of the use of bicycles.  
  • Transforming the informal economy, creating better living conditions and improving food security.
  • Decoupling economic growth from extraction of resources and use of carbon-based energy. 

Shift countries (for instance: The United States of America, Japan, Argentina and member countries of the European Union)

Because of their ecological footprint, these countries must shift away from over-consuming the planet’s resources, and reinvent their affluent and comfortable lifestyles, also taking account of large internal differences. 

Paths towards circularity:

  • Consuming smarter through (1) product lifetime extension; (2) increase material efficiency through new technology and design and (3) promotion and adoption of sharing business models.
  • Taking control of the impact of their imports and exports, for instance by radically reducing the international trade of secondary materials and products (waste).
  • Ramp up the infrastructural transformation required to secure abundant capacity for renewable energy generation.

[1] https://assets.website-files.com/5e185aa4d27bcf348400ed82/5e26ead616b6d1d157ff4293_20200120%20-%20CGR%20Global%20-%20Report%20web%20single%20page%20-%20210x297mm%20-%20compressed.pdf

Stop the depletion of the earth

Next months, these posts deal with the challenges of Earthlings of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

Brighton Waste House, a project of the Faculty of Arts and Humanities. Photo: University of (public domain).

The picture above is the Waste house at the university campus of Brighton, constructed from local waste.  In our society reuse of waste still is limited. Repair of household appliances seems to be not done: Last year, three devices in my home broke. No shops could fix them, although surfing the Internet revealed the existence of replacement parts.  I’d better buy a new one, they advised. 

The flow of materials

Our economy is characterized by the take-make-waste principle, which results in an excess of cheap mass products that are thrown away at the end of their life cycle. Moreover, the majority of the raw materials are not recycled or reused in low quality. The result is a large amount of waste, pollution and the rapid exhaustion of raw materials worldwide.

A closer look at the flowchart of materials below is enlightening. Look here for a larger copy

The graph reveals that the volume of resources extracted in 2017 was 84,4 Gt (billions of ton), supplemented by 8.4 Gt reused ones: Minerals (37.9 Gt,) ores (9.6 Gt, fossil fuels (16,6 Gt) and biomass (28,7 Gt). In 2017 the global economy was 9,1% circular. In 2019 only 8,6%.

Of this material input in 2017 (92.8 Gt), 36.0 Gt became part of the long-term stock of buildings, roads, cars and other capital goods. The stock of capital goods (houses, buildings, infrastructure, fleet) has expanded considerably in recent decades, which can lead to a large increase in potential waste in the coming years.

The largest part (56.8 Gt) was used for the production of goods with a lifetime that does not extend beyond 2017.

Of the total waste of 19,4 Gt in 2017, 8.4 Gt is reused, for example by water treatment, the production of biogas, through recycling (only 1,4 Gt) and by composting. The majority of recycled material is of low quality. The remainder, 9,2 Gt is ‘lost’ and is scattered in the environment.  For instance, through microfibers that are added to the ocean and might return in the food chain.

Towards a circular economy

The problem of the ‘take-make-waste’-principle is not waste only. The linear economy on which this principle is based is a major cause of greenhouse gas emissions and, moreover, leads to the depletion of raw materials by rich and emerging countries or better, their rich minorities all over the world. The extraction of resources by contemporary and previous generations will stagnate the developing of future generations. Replacement by the circular principle can correct this lack of justice. 

Materials such as metals, plastics and chemicals cannot return to nature without processing. Instead, we distinguish four ways to stretch their lifespan and preserve their value, so that no new raw materials have to be extracted.

  • Repairing and sharing;
  • Reuse by other users without major changes;
  • Renovate and overhaul, dismantle and assemble into a new product, possibly with the addition of new functionalities;
  • Recycling: tracing back the product to its original material, preferably at the highest possible level (for example, plastic waste becomes ‘virgin’ plastic). In this case the original product can be re-manufactured.

A circular economy is regenerative by design and aims to keep products and materials in permanent use, without the need to exploit additional resources. 

It is based on four principles:

  • Decoupling the provision of new products and services from the availability of finite resources. 
  • Design out waste and pollution and other negative externalities of economic activity that harm human health and natural systems. This includes toxic substances, greenhouse gas emissions, air, land and water pollution, and traffic congestion.
  • Maintaining the highest value of components and materials by designing them for reuse, rework and recycling.
  • Maintaining natural capital through the circulation of nutrients and creating the conditions for regeneration of, for example, soil.

We are at the beginning of a long process and we are running out of the time available

Collector’s item: Printed version e-book available (in Dutch only)

Op verzoek heb ik enkele tientallen hardcopy’s laten drukken van mijn e-boek Steden van de toekomst. Humaan als keuze. Smart waar dat helpt. Maak hiervoor €20 over op IBAN NL35 INGB 000 167 5550 tnv H. van den Bosch onder vermelding van je adres. Ik stuur het boek dan per kerende post.

I have several dozen of hard copies printed of my e-book Steden van de toekomst. Humaan als keuze. Smart waar dat helpt (in Dutch). Transfer €20 at IBAN NL35 INGB 000 167 5550 in favour of H. van den Bosch. Don’t forget mentioning jour address. Subsequently, I will sent the book per return post.

Promises of hydrogen: exaggerated or underestimated

Next months, these posts deal with the challenges of Earthlings of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

e-bike fuelled with hydrogen

Hydrogen can play an important role in the storage of cheap and surplus green electricity, as an alternative to natural gas and as a fuel for buses, trains, planes, and ships.

The production of hydrogen

The process of electrolysis brings water into contact with electricity, resulting in oxygen and hydrogen. A 100% clean process, provided the use of energy from carbon-free sources. ‘Blue’ hydrogen occurs when the CO2 released during the production of electricity is collected and stored.

Advantages and disadvantages of hydrogen.

The storage of hydrogen is easy, particularly if conversed into ammonia. A kilo of hydrogen is producing the same amount of energy as a fully-fledged Tesla Power Wall. A tank with 60,000 m3 of ammonia can deliver more than 200 million kilowatt hours. That is the annual production of 30 wind turbines on land. The problem with hydrogen is that 60% of energetic value is lost when electricity is used to make hydrogen and hydrogen is converted it into electricity again. Storing electricity in a battery yields only 5% loss of value.

Hydrogen plant in Rotterdam (blue containers) and the apartment complex (left center) that will be heated with hydrogen. Photo: DNV GL

Heating

A possible application of hydrogen is as a substitute for natural gas, which limits energy loss to 30%. For an apartment complex in Rotterdam, hydrogen will be produced locally and transported via dedicated gas pipelines (photo). An electric heat pump would have reduced energy use with 75%, given perfect isolation. Exactly to avoid cost of isolation, housing corporations are considering hydrogen in older houses. Eventually, heating on hydrogen will be reserved for historic city centers, where few alternatives are available.

Transport

An also frequently mentioned application of hydrogen is transport. In the meantime, for all forms of transport – even bicycling – hydrogen models are available. 

With the foregoing in mind, hydrogen as fuel for passenger cars – not to speak of e-bicycles –  is quite odd. Although the range is about 600 km and refueling is fast, the difference with electric cars is reducing fast. For other means of transport, the verdict may be more positive. The rule is, the larger the desired range and the heavier the load, the more the benefits of hydrogen equal or outweigh the advantages of batteries. Examples are buses, lorries, but also planes and ships

Energy storage

The production costs of solar energy in desert areas are considerably lower than those in Europe. This is mainly due to the considerably greater light intensity, which means that the yield of solar panels and collectors is twice as high. The Gulf States see themselves as future export countries of hydrogen, in the form of ammonia. 

The gas group Air Products & Chemicals has announced that it will build a hydrogen factory in NEOM, a mega city in Saudi Arabia, which is under development. This factory will produce annually 2.3 million tons of hydrogen (1.2 million tons of ammonia). This factory, due to be completed in 2025, will be the largest in the world.

The European Union also has biggest plans. In 2024, 1 million to hydrogen must already be produced, which should have increased tenfold by 2013.

The Netherlands is investigating the possibility of converting wind energy generated in the North Sea to hydrogen on site, if there is an overcapacity on the network. This can save billions in grid reinforcement. The powerful sea breeze may ensure that production is competitive with to imported hydrogen.

Hydrogen storage – Photo NASA

Whether the substantial potential of hydrogen is realized depends in the first place from the availability of cheap sources of wind or solar energy and the willingness of the western world to engage in new dependency from the ‘former’ oil producing countries who can deliver cheap hydrogen.

Energy-neutral houses are within reach

Next months, these posts deal with the challenges of Earthlings of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

An example of an almost fully sustainable buildings (according to BREEAM) is the Bloomberg HQ in London (see photograph). Among the many (technological) means to achieve this is, are a green living wall, natural ventilation systems, and 4,000 integrated ceiling panels that combine heating, cooling, and lighting. 

Buildings and residential houses are the largest energy consumers in cities (heating, warming, cooling and lightning), not to speak about the production of building materials. They account for 40% of the global energy consumption. Massive realization of energy-neutral buildings (NZEBs) is therefore top priority for urban developers.

Copenhagen plans to be CO2-neutral in 2025 and is on track despite significant growth in population and jobs[1]. District heating and cooling of almost the whole city is the most important tool to achieve this, along with the limitation of car-use. Copenhagen implements a smart thermal grid, that uses all the residual heat that comes from industrial and commercial activities. Seawater is used for cooling.

Copenhagen is a shining example for the rest of Europe. There is sufficient residual heat to supply 90% of the heat demand of all houses and buildings. The Heat Europe project tries to link areas with a surplus of residual heat to areas with a shortage. The video below shows the ambitions, contours and outcomes of this project.

New York is exemplary in another way. The Dirty Buildings Bill requires that 50,000 buildings reduce emissions by 40% by 2030 and 80% by 2050[2]. This includes the installation of new windows, insulation, and other retrofit procedures. The law applies to buildings over 25,000 square feet, and together they account for half of all emissions from buildings, although they cover only 2% of total number of buildings in the city[3].

Building permits are useful instruments to influence energy consumption and to promote circularity. In a building permit, requirements can be set for the use of less cement and steel and to limit energy consumption. Switching to sustainable timber is an option for 90% of homes and 70% of offices being built. At the other hand, building in an energy neutral, or even positive way offers many advantages. That is why 37% of British developers are convinced that in a few years’ time their portfolio will largely consist of green buildings. 

Besides, a city like London could save over $ 11 billion over the next 5 years by using existing buildings more efficiently and avoiding new construction, which won’t be a problem in the post-Covid era when one or two days working from home will be the new normal.


[1] https://medium.com/everything-thats-next/this-is-how-copenhagen-plans-to-go-carbon-neutral-by-2025-70849d2d67dc

[2] https://www.fastcompany.com/90336307/new-york-city-is-about-to-pass-its-own-green-new-deal?utm_source=postup&utm_medium=email&utm_campaign=Fast%20Company%20Daily&position=5&partner=newsletter&campaign_date=04182019

[3] https://www.archdaily.com/915656/new-york-citys-mayor-is-planning-to-ban-new-glass-skyscrapers?utm_medium=email&utm_source=ArchDaily%20List&kth=

Climate policy, where fighting global warming and poverty meet

Next months, these posts deal with the challenges of Earthlings of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here

Neighborhood Poverty and Household Financial Security | The Pew Charitable  Trusts

Challenges

After the eradication of Covid-19, the world must focus again on the two epoch-making challenges, mitigation of global warming and fighting poverty. According to the World Economic Forum, the mayor threats of humanity. By selecting proper policy tools, both challenges can be addressed at once

The termination of greenhouse gas emissions in 2050 requires huge investments, roughly $ 50 to $ 200 per ‘saved’ cubic meter CO2-equivalents.  At the same time, these investments provide a global economic stimulus of $ 16,600 billion.

Addressing global warming

In summary, municipal authorities worldwide have to work together with all stakeholders, citizens not in the last place, to reduce global warming, and implement a series of activities such as:

  • Covering all suitable roofs with solar panels;
  • Installing wind turbines in seas adjacent to densely populated areas;
  • Creating sufficient storage options for the short and medium term;
  • Creating ‘smart grids’ to manage the production and consumption of electricity;
  • Heating houses with district heating systems powered by industrial residual heat, hydrogen or heat pumps;
  • Reducing energy use through insulation, efficient use of buildings and smart thermostatic systems;
  • Scrutinizing the necessity of new construction and take care that it apples to BREEAM requirements;
  • Using ‘green’ hydrogen for industrial processes
  • Using biotechnology to remove oil, coal and gas from industrial production
  • Reducing use of cars (electric ones included) by urban design, enabling walking and cycling opportunities by public transport and by MaaS.
  • Replace where possible flying by traveling by train
  • Reuse of waste at the highest possible level;
  • Intensification of responsible production of food;
  • Adjustment of consumption patterns like mitigating the use of meat.

Despite the magnitude of the challenge involved by the transition to climate-neutral cities, there is reason for optimism. Money is not the big issue. The required investments will pay for themselves in the long term and the transition to clean technology will contribute to responsible economic growth. However….

Addressing poverty

The overriding limitation is the lack of skilled labor and here is the connection with fighting poverty. The transition to an energy-neutral society will offer ample job opportunities. That is why care for jobs, a reasonable income, adequate housing and education go hand in hand with combating global warming. Jobs are the best guarantee for a reasonable income and job opportunities are an incentive to invest in education. 

It is already ten years ago, that the United nations called for a ‘Global Green New Deal’ in which developed countries would invest at least 1% of GDP on reducing carbon dependency, while developing economies should spend 1% of GDP on improving access to clean water and sanitation for the poor as well as strengthening social safety nets. 

At this moment Green New Deal programs are at the brim of implementation in the US (What a relief!!!!), Canada and Europe as well. These programs are achieving net-zero carbon emissions in the next decades and potentially create millions of well-paying jobs in order to create the necessary infrastructure and to reduce the number of poor, work- or homeless people correspondingly. Add to that protection against monopolies, investments in public transport, access to affordable housing and healthy food, and justice for the historically marginalized people in the transition to a new economy.

If these promises become true, the eradication of Covid-19 will be followed by significant steps towards a more humane world. 

The disappearance of engagement and passion

Next months, these posts deal with the challenges of Earthlings of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here.  

For centuries, entrepreneurship has been motivated by craftsmen’s passion. In less than one century this kind of entrepreneurship disappeared. The fascination of making new things still can be found incidentally in small and medium-sized businesses operating. In large companies a new generation of managers has taken possession of the boardroom, who are motivated by financial incentives in the first place. This applies to most employees too. Let’s face the facts.

Engagement

Each year, Gallup collects data worldwide about the engagement of the workforce in companies and organizations with more than 50 employees. These are characterized as ‘engaged’, ‘actively not engaged’ and ‘passively not engaged’. The table below provides an overview, showing that in any country only a minority of this group is ‘actively engaged’. This means that they are enthusiastic about their work, their colleagues, praise their company, and do not worry if they have to work overtime. 

Percentages of actively engaged (green), passively not engaged (gray) and actively not engaged (black) of employees in different parts of the world.

Lack of engagement correlates strongly with the ‘low strain’ character of many jobs, but also with the management style of most bosses.

Companies want to increase the engagement of their employees as the level of engagement correlates with productivity. Therefore, worldwide they spend billions on this goal and to train managers to support it. Without much result.

Engagement is not enough

According to John Hagel, managers are heading in the wrong direction by focusing on engagement alone. After studying individuals who are exceptionally productive in a wide range of professions, he concluded that what they have in common is ‘the passion of an explorer’. 

Passion does not mean that these people are overly gifted, diligent, hardworking or smart. Instead, they are determined to achieve their goal in a certain domain, are excited when faced with challenges, and seek collaboration with others who can support them. Passion is the main driver of entrepreneurship.

Unfortunately, the number of employees with passion is even lower than the number of engaged ones. The latest US survey of passionate employees shows that up to 13% of the workforce (managers included) have each of the three aforementioned attributes. An additional 39% have one or two attributes. 64% of all employees and managers are neither engaged nor passionate, or in other words they lack the essence of entrepreneurial behaviour.

This lack of engagement and passion entrepreneurship or intrapreneurship is understandable. The 20th century companies have organized their production according to principles of scalable efficiency and a system of planning and control, top-down assessment based on performance indicators and quarterly reporting to the next boss in hierarchy. Consequently, room for initiative is limited, neither expected nor desired. At the same time making money became the ultimate objective of most companies and the top management made large efforts to satisfy the shareholders and their own monetary ambitions.

Self-organization and interpreneurship

There are strong arguments for self-organization and -management by employees, just think of the book Reinventing Organizations by Frederic Laloux. However, little research has been done into the relationship between self-management, entrepreneurial behaviour and performance. The recently published HOW-report has changed this. Research in 17 countries (among others the Netherlands, Germany, the USA, India, Russia, China and Japan) showed that organizations based on self-government performed better in all respects.

The superiority of self-governed organizations. The gray bar refers at organizations in which employee’s influence depend on their rank and authority. The black organisations are the dominant type, based on hierarchical assignment of tasks, planning and control and the red ones are based on self-government.

The superiority of the scores of self-governed organizations is clear. The HOW-report has delved into the distinguishing characteristics of employees of these companies. These are: more trust, willingness to take risk, celebration of success as collective achievement, collaboration and mutual assistance, sharing information, and respect for personal judgement. 

In order to survive, companies should digest these data, but managers will not be happy with them. They undermine their position and huge financial benefits.  Time will learn whether the many new start-ups are wiser, or whether they become ‘takers’ instead of ‘makers’ as well, to use Joseph Stiglitz words.


Heading for a doughnut economy: A brief encounter

Next months, my posts deal with the prospects of bringing humane cities closer. These posts represent the most important findings of my e-book Humane cities. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here.  

Urban farm – Pinterest

The model for a doughnut economy has been developed by the British economist Kate Raworth in a report for Oxfamentitled A Safe and Just Space for Humanity and the idea quickly spread throughout the world. The essence is that social and environmental sustainability must be guiding principles for economic policy in the 21th century and together direct economic behavior. There is no triple bottom-line: Social and environmental sustainability are in the lead, economy follows.

The idea behind ​​the doughnut-model is simple. if you only look at the shape of a doughnut, you see two circles. A small circle in the middle and a large circle on the outside. The smallest circle represents the minimal social objectives (basic-needs) that apply to each country. The large circle represents the self-sustaining capacity of the planet. All societies must develop policies that stay between the two lines. Where economic behavior nowadays has far reaching consequences that go beyond both lines, future economic policy must aim to make societies thrive between the lines.

Prosperity within limits

The actions below mirror policy actions to prevent overshooting the ecological ceiling and to comply with the social basement, albeit adapted to the capabilities of developed countries. The time horizon is 25 years. Below I give a few examples.

Prevention of overshooting the ecological ceiling:

  1. Reduction to zero of greenhouse gas emissions by the combined use of solar, wind and thermal energy. Hydrogen, salt, batteries, and warm water reservoirs are used for storage.
  2. Local plants are clean; toxic or otherwise dangerous emissions are prevented or temporarily sequestered in order to maintain clean air.
  3. Support of local farmers to restructure their operations in order to regenerate soils, increase biodiversity and contribute significantly to the local food supply. The selling of their products is boosted by substantial tax advantages for certificated products.
  4. Reduction of car use by reconstructing cities in order to limit displacements.
  5. Realizing full-circularity; the import of raw materials is stalled, with the (temporal) exception of indispensable components of batteries.
  6. The use of nitrogen is limited until an acceptable level of emissions in the air or in the groundwater is reached.
  7. Construction of reservoirs for drinking water and water for agricultural applications to balance water extraction and supply of water.

Complying with the social basement

  1. Rebalancing material rewards and job satisfaction, for instance by substantial reduction of income inequality.
  2. Compulsory education from 2 – 18, in combination with internships in companies and institutions.
  3. Tax benefits for B-certified companies (companies for which societal interest are leading).
  4. Local government, companies and institutions work together to offer all adults engaging and challenging jobs with salaries that enable a decent and independent life.
  5. Prices of (imported) products that damage health or the environment (or both) are listed and substantially taxed. 
  6. The cost of health care and assurance depends on obtaining certificates for a healthy life and preventing lifestyle related illnesses such as being overweight.
  7. Citizens can vote directly in matters related to their immediate living environment. 
  8. Decent housing for all adults, and adequate housing for students, situated in an attractive and safe living environment.

A global oriented-mindset

A future of responsible prosperity requires a new mindset, including the meaning of the concept of prosperity itself. Zero greenhouse gas emissions do not only require exchanging carbon energy sources by wind, sun and earth, but also new consumption pattern. Meat becomes a delicacy, to be consumed accordingly. Circular production requires a more efficient use of goods, higher prices, superior quality, the repair of broken devises instead of their replacement, and a less fashion-dependent design. With respect to the traditional yardstick of prosperity, a stable GDP, rather than a growing one is probably the highest conceivable goal, if it should be a goal at all. Wages below modal will rise considerably, wages above modal will decrease, the highest 10% in particular.

If we consider the world as a whole, the policy implications are even more dramatic. A considerable part of the world population still lives below the social basement. The population of these countries is growing fast and concentrates in cities characterized by heavy pollution, traffic jams, dirty industries, poor housing, sanitation and water supply and increasing insecurity and inequality.

In these countries, growth of GDP, the production of goods and services, and the domestic markets as well are necessary for at least one decade. In combination with policies to control population growth and pollution, to use renewable resources and to improve the infrastructure; public transportation, water supply, housing and sanitation in the first place. 

Where governments in developed countries can focus on a transition from traditional growth towards sustainable prosperity immediately, developing countries must simultaneously manage a decade of ‘traditional’ economic growth and a transition to sustainable prosperity.

The social origin of global warming

Next months, these posts deal with the challenges of Earthlings and also with the prospects of bringing humane cities closer. These posts represent the most important findings of my e-book Cities of the future. Always humane. Smart if helpful, updates and supplements included. The English version of this book can be downloaded for free here and the Dutch version here.  

Climate Change | National Geographic Society

As the map below shows, poorer countries have already suffered more from global warming because they are located in the warmest parts of the world, like Africa, South Asia, and Central America. It also applies to the southern and poorest part of the US.

Country-level economic impact of global warming – Image National Academy of Sciences

There is another reality to face. Not only the poorest countries will suffer most from climate change, they hardly can be blamed for it. A recent Oxfam report Extreme carbon inequality shows that the poorest half of the world population – around 3.5 billion people – is responsible for only 10% of total global emissions from individual consumption. About 50% of the emissions come from the richest 10% of people around the world. They have an average carbon footprint that is 11 times as high as that of the poorest half, and 60 times as high as that the poorest 10%. Even a 50% reduction in consumption by the top 10% and a doubling of consumption by the lower 50% would result in a worldwide decrease of consumption of about 15%[1]. Within all countries, the production of greenhouse gasses varies with income. 

/var/folders/5q/w0jt8kbx5vnc_mp7b36p_x480000gp/T/com.microsoft.Word/WebArchiveCopyPasteTempFiles/p6164
Per capita consumption-related emissions in G20 countries

The graph shows that the concept of rich versus poor countries is partly misleading. A small part of the population of all countries has affluent and still-growing opportunity to consume and to contribute to the production of greenhouse gasses; the majority of the population stays far behind.

This national elites with its numerous connections with international business and politics have prevented adequate social and environmental policies for more than half a century, including the only measures that could have prevented global warming, namely the internalization of external costs[2] and in particular carbon tax[3]. The result: the economic prospects of the majority of the global population stay behind and moreover it will suffer most from global warming.


[1] https://www-cdn.oxfam.org/s3fs-public/file_attachments/mb-extreme-carbon-inequality-021215-en.pdf

[2] https://medium.com/@aimunm83/want-to-solve-climate-change-solve-the-economy-ce516e31d361

[3] https://medium.com/the-sensible-soapbox/british-columbias-carbon-tax-is-working-3ea81114be5a